| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gaid.1 |
|- X = ( Base ` G ) |
| 2 |
|
elex |
|- ( S e. V -> S e. _V ) |
| 3 |
2
|
anim2i |
|- ( ( G e. Grp /\ S e. V ) -> ( G e. Grp /\ S e. _V ) ) |
| 4 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 5 |
1 4
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 6 |
5
|
adantr |
|- ( ( G e. Grp /\ S e. V ) -> ( 0g ` G ) e. X ) |
| 7 |
|
ovres |
|- ( ( ( 0g ` G ) e. X /\ x e. S ) -> ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = ( ( 0g ` G ) 2nd x ) ) |
| 8 |
|
df-ov |
|- ( ( 0g ` G ) 2nd x ) = ( 2nd ` <. ( 0g ` G ) , x >. ) |
| 9 |
|
fvex |
|- ( 0g ` G ) e. _V |
| 10 |
|
vex |
|- x e. _V |
| 11 |
9 10
|
op2nd |
|- ( 2nd ` <. ( 0g ` G ) , x >. ) = x |
| 12 |
8 11
|
eqtri |
|- ( ( 0g ` G ) 2nd x ) = x |
| 13 |
7 12
|
eqtrdi |
|- ( ( ( 0g ` G ) e. X /\ x e. S ) -> ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x ) |
| 14 |
6 13
|
sylan |
|- ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) -> ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x ) |
| 15 |
|
simprl |
|- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> y e. X ) |
| 16 |
|
simplr |
|- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> x e. S ) |
| 17 |
|
ovres |
|- ( ( y e. X /\ x e. S ) -> ( y ( 2nd |` ( X X. S ) ) x ) = ( y 2nd x ) ) |
| 18 |
|
df-ov |
|- ( y 2nd x ) = ( 2nd ` <. y , x >. ) |
| 19 |
|
vex |
|- y e. _V |
| 20 |
19 10
|
op2nd |
|- ( 2nd ` <. y , x >. ) = x |
| 21 |
18 20
|
eqtri |
|- ( y 2nd x ) = x |
| 22 |
17 21
|
eqtrdi |
|- ( ( y e. X /\ x e. S ) -> ( y ( 2nd |` ( X X. S ) ) x ) = x ) |
| 23 |
15 16 22
|
syl2anc |
|- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( y ( 2nd |` ( X X. S ) ) x ) = x ) |
| 24 |
|
simprr |
|- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> z e. X ) |
| 25 |
|
ovres |
|- ( ( z e. X /\ x e. S ) -> ( z ( 2nd |` ( X X. S ) ) x ) = ( z 2nd x ) ) |
| 26 |
|
df-ov |
|- ( z 2nd x ) = ( 2nd ` <. z , x >. ) |
| 27 |
|
vex |
|- z e. _V |
| 28 |
27 10
|
op2nd |
|- ( 2nd ` <. z , x >. ) = x |
| 29 |
26 28
|
eqtri |
|- ( z 2nd x ) = x |
| 30 |
25 29
|
eqtrdi |
|- ( ( z e. X /\ x e. S ) -> ( z ( 2nd |` ( X X. S ) ) x ) = x ) |
| 31 |
24 16 30
|
syl2anc |
|- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( z ( 2nd |` ( X X. S ) ) x ) = x ) |
| 32 |
31
|
oveq2d |
|- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) = ( y ( 2nd |` ( X X. S ) ) x ) ) |
| 33 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 34 |
1 33
|
grpcl |
|- ( ( G e. Grp /\ y e. X /\ z e. X ) -> ( y ( +g ` G ) z ) e. X ) |
| 35 |
34
|
3expb |
|- ( ( G e. Grp /\ ( y e. X /\ z e. X ) ) -> ( y ( +g ` G ) z ) e. X ) |
| 36 |
35
|
ad4ant14 |
|- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( y ( +g ` G ) z ) e. X ) |
| 37 |
|
ovres |
|- ( ( ( y ( +g ` G ) z ) e. X /\ x e. S ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( ( y ( +g ` G ) z ) 2nd x ) ) |
| 38 |
|
df-ov |
|- ( ( y ( +g ` G ) z ) 2nd x ) = ( 2nd ` <. ( y ( +g ` G ) z ) , x >. ) |
| 39 |
|
ovex |
|- ( y ( +g ` G ) z ) e. _V |
| 40 |
39 10
|
op2nd |
|- ( 2nd ` <. ( y ( +g ` G ) z ) , x >. ) = x |
| 41 |
38 40
|
eqtri |
|- ( ( y ( +g ` G ) z ) 2nd x ) = x |
| 42 |
37 41
|
eqtrdi |
|- ( ( ( y ( +g ` G ) z ) e. X /\ x e. S ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = x ) |
| 43 |
36 16 42
|
syl2anc |
|- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = x ) |
| 44 |
23 32 43
|
3eqtr4rd |
|- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) |
| 45 |
44
|
ralrimivva |
|- ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) -> A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) |
| 46 |
14 45
|
jca |
|- ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) -> ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) |
| 47 |
46
|
ralrimiva |
|- ( ( G e. Grp /\ S e. V ) -> A. x e. S ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) |
| 48 |
|
f2ndres |
|- ( 2nd |` ( X X. S ) ) : ( X X. S ) --> S |
| 49 |
47 48
|
jctil |
|- ( ( G e. Grp /\ S e. V ) -> ( ( 2nd |` ( X X. S ) ) : ( X X. S ) --> S /\ A. x e. S ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) ) |
| 50 |
1 33 4
|
isga |
|- ( ( 2nd |` ( X X. S ) ) e. ( G GrpAct S ) <-> ( ( G e. Grp /\ S e. _V ) /\ ( ( 2nd |` ( X X. S ) ) : ( X X. S ) --> S /\ A. x e. S ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) ) ) |
| 51 |
3 49 50
|
sylanbrc |
|- ( ( G e. Grp /\ S e. V ) -> ( 2nd |` ( X X. S ) ) e. ( G GrpAct S ) ) |