| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gaid.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
elex |
⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) |
| 3 |
2
|
anim2i |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ( 𝐺 ∈ Grp ∧ 𝑆 ∈ V ) ) |
| 4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 5 |
1 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 7 |
|
ovres |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( ( 0g ‘ 𝐺 ) 2nd 𝑥 ) ) |
| 8 |
|
df-ov |
⊢ ( ( 0g ‘ 𝐺 ) 2nd 𝑥 ) = ( 2nd ‘ 〈 ( 0g ‘ 𝐺 ) , 𝑥 〉 ) |
| 9 |
|
fvex |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
| 10 |
|
vex |
⊢ 𝑥 ∈ V |
| 11 |
9 10
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 0g ‘ 𝐺 ) , 𝑥 〉 ) = 𝑥 |
| 12 |
8 11
|
eqtri |
⊢ ( ( 0g ‘ 𝐺 ) 2nd 𝑥 ) = 𝑥 |
| 13 |
7 12
|
eqtrdi |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 14 |
6 13
|
sylan |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 15 |
|
simprl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
| 16 |
|
simplr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑆 ) |
| 17 |
|
ovres |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 2nd 𝑥 ) ) |
| 18 |
|
df-ov |
⊢ ( 𝑦 2nd 𝑥 ) = ( 2nd ‘ 〈 𝑦 , 𝑥 〉 ) |
| 19 |
|
vex |
⊢ 𝑦 ∈ V |
| 20 |
19 10
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑦 , 𝑥 〉 ) = 𝑥 |
| 21 |
18 20
|
eqtri |
⊢ ( 𝑦 2nd 𝑥 ) = 𝑥 |
| 22 |
17 21
|
eqtrdi |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 23 |
15 16 22
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 24 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
| 25 |
|
ovres |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑧 2nd 𝑥 ) ) |
| 26 |
|
df-ov |
⊢ ( 𝑧 2nd 𝑥 ) = ( 2nd ‘ 〈 𝑧 , 𝑥 〉 ) |
| 27 |
|
vex |
⊢ 𝑧 ∈ V |
| 28 |
27 10
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑧 , 𝑥 〉 ) = 𝑥 |
| 29 |
26 28
|
eqtri |
⊢ ( 𝑧 2nd 𝑥 ) = 𝑥 |
| 30 |
25 29
|
eqtrdi |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 31 |
24 16 30
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 32 |
31
|
oveq2d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) |
| 33 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 34 |
1 33
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 35 |
34
|
3expb |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 36 |
35
|
ad4ant14 |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 37 |
|
ovres |
⊢ ( ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) 2nd 𝑥 ) ) |
| 38 |
|
df-ov |
⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) 2nd 𝑥 ) = ( 2nd ‘ 〈 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) , 𝑥 〉 ) |
| 39 |
|
ovex |
⊢ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ V |
| 40 |
39 10
|
op2nd |
⊢ ( 2nd ‘ 〈 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) , 𝑥 〉 ) = 𝑥 |
| 41 |
38 40
|
eqtri |
⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) 2nd 𝑥 ) = 𝑥 |
| 42 |
37 41
|
eqtrdi |
⊢ ( ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 43 |
36 16 42
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 44 |
23 32 43
|
3eqtr4rd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) |
| 45 |
44
|
ralrimivva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) |
| 46 |
14 45
|
jca |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) ) |
| 47 |
46
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) ) |
| 48 |
|
f2ndres |
⊢ ( 2nd ↾ ( 𝑋 × 𝑆 ) ) : ( 𝑋 × 𝑆 ) ⟶ 𝑆 |
| 49 |
47 48
|
jctil |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ( ( 2nd ↾ ( 𝑋 × 𝑆 ) ) : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) ) ) |
| 50 |
1 33 4
|
isga |
⊢ ( ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ∈ ( 𝐺 GrpAct 𝑆 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ V ) ∧ ( ( 2nd ↾ ( 𝑋 × 𝑆 ) ) : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) ) ) ) |
| 51 |
3 49 50
|
sylanbrc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ∈ ( 𝐺 GrpAct 𝑆 ) ) |