| Step |
Hyp |
Ref |
Expression |
| 1 |
|
harmonic.1 |
|- F = ( n e. NN |-> ( 1 / n ) ) |
| 2 |
|
harmonic.2 |
|- H = seq 1 ( + , F ) |
| 3 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 4 |
|
0zd |
|- ( H e. dom ~~> -> 0 e. ZZ ) |
| 5 |
|
1ex |
|- 1 e. _V |
| 6 |
5
|
fvconst2 |
|- ( k e. NN0 -> ( ( NN0 X. { 1 } ) ` k ) = 1 ) |
| 7 |
6
|
adantl |
|- ( ( H e. dom ~~> /\ k e. NN0 ) -> ( ( NN0 X. { 1 } ) ` k ) = 1 ) |
| 8 |
|
1red |
|- ( ( H e. dom ~~> /\ k e. NN0 ) -> 1 e. RR ) |
| 9 |
2
|
eleq1i |
|- ( H e. dom ~~> <-> seq 1 ( + , F ) e. dom ~~> ) |
| 10 |
9
|
biimpi |
|- ( H e. dom ~~> -> seq 1 ( + , F ) e. dom ~~> ) |
| 11 |
|
oveq2 |
|- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
| 12 |
|
ovex |
|- ( 1 / k ) e. _V |
| 13 |
11 1 12
|
fvmpt |
|- ( k e. NN -> ( F ` k ) = ( 1 / k ) ) |
| 14 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
| 15 |
13 14
|
eqeltrd |
|- ( k e. NN -> ( F ` k ) e. RR ) |
| 16 |
15
|
adantl |
|- ( ( H e. dom ~~> /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 17 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 18 |
17
|
rpreccld |
|- ( k e. NN -> ( 1 / k ) e. RR+ ) |
| 19 |
18
|
rpge0d |
|- ( k e. NN -> 0 <_ ( 1 / k ) ) |
| 20 |
19 13
|
breqtrrd |
|- ( k e. NN -> 0 <_ ( F ` k ) ) |
| 21 |
20
|
adantl |
|- ( ( H e. dom ~~> /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
| 22 |
|
nnre |
|- ( k e. NN -> k e. RR ) |
| 23 |
22
|
lep1d |
|- ( k e. NN -> k <_ ( k + 1 ) ) |
| 24 |
|
nngt0 |
|- ( k e. NN -> 0 < k ) |
| 25 |
|
peano2re |
|- ( k e. RR -> ( k + 1 ) e. RR ) |
| 26 |
22 25
|
syl |
|- ( k e. NN -> ( k + 1 ) e. RR ) |
| 27 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 28 |
27
|
nngt0d |
|- ( k e. NN -> 0 < ( k + 1 ) ) |
| 29 |
|
lerec |
|- ( ( ( k e. RR /\ 0 < k ) /\ ( ( k + 1 ) e. RR /\ 0 < ( k + 1 ) ) ) -> ( k <_ ( k + 1 ) <-> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) ) |
| 30 |
22 24 26 28 29
|
syl22anc |
|- ( k e. NN -> ( k <_ ( k + 1 ) <-> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) ) |
| 31 |
23 30
|
mpbid |
|- ( k e. NN -> ( 1 / ( k + 1 ) ) <_ ( 1 / k ) ) |
| 32 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( 1 / n ) = ( 1 / ( k + 1 ) ) ) |
| 33 |
|
ovex |
|- ( 1 / ( k + 1 ) ) e. _V |
| 34 |
32 1 33
|
fvmpt |
|- ( ( k + 1 ) e. NN -> ( F ` ( k + 1 ) ) = ( 1 / ( k + 1 ) ) ) |
| 35 |
27 34
|
syl |
|- ( k e. NN -> ( F ` ( k + 1 ) ) = ( 1 / ( k + 1 ) ) ) |
| 36 |
31 35 13
|
3brtr4d |
|- ( k e. NN -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 37 |
36
|
adantl |
|- ( ( H e. dom ~~> /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 38 |
|
oveq2 |
|- ( k = j -> ( 2 ^ k ) = ( 2 ^ j ) ) |
| 39 |
38
|
fveq2d |
|- ( k = j -> ( F ` ( 2 ^ k ) ) = ( F ` ( 2 ^ j ) ) ) |
| 40 |
38 39
|
oveq12d |
|- ( k = j -> ( ( 2 ^ k ) x. ( F ` ( 2 ^ k ) ) ) = ( ( 2 ^ j ) x. ( F ` ( 2 ^ j ) ) ) ) |
| 41 |
|
fconstmpt |
|- ( NN0 X. { 1 } ) = ( k e. NN0 |-> 1 ) |
| 42 |
|
2nn |
|- 2 e. NN |
| 43 |
|
nnexpcl |
|- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
| 44 |
42 43
|
mpan |
|- ( k e. NN0 -> ( 2 ^ k ) e. NN ) |
| 45 |
|
oveq2 |
|- ( n = ( 2 ^ k ) -> ( 1 / n ) = ( 1 / ( 2 ^ k ) ) ) |
| 46 |
|
ovex |
|- ( 1 / ( 2 ^ k ) ) e. _V |
| 47 |
45 1 46
|
fvmpt |
|- ( ( 2 ^ k ) e. NN -> ( F ` ( 2 ^ k ) ) = ( 1 / ( 2 ^ k ) ) ) |
| 48 |
44 47
|
syl |
|- ( k e. NN0 -> ( F ` ( 2 ^ k ) ) = ( 1 / ( 2 ^ k ) ) ) |
| 49 |
48
|
oveq2d |
|- ( k e. NN0 -> ( ( 2 ^ k ) x. ( F ` ( 2 ^ k ) ) ) = ( ( 2 ^ k ) x. ( 1 / ( 2 ^ k ) ) ) ) |
| 50 |
|
nncn |
|- ( ( 2 ^ k ) e. NN -> ( 2 ^ k ) e. CC ) |
| 51 |
|
nnne0 |
|- ( ( 2 ^ k ) e. NN -> ( 2 ^ k ) =/= 0 ) |
| 52 |
50 51
|
recidd |
|- ( ( 2 ^ k ) e. NN -> ( ( 2 ^ k ) x. ( 1 / ( 2 ^ k ) ) ) = 1 ) |
| 53 |
44 52
|
syl |
|- ( k e. NN0 -> ( ( 2 ^ k ) x. ( 1 / ( 2 ^ k ) ) ) = 1 ) |
| 54 |
49 53
|
eqtrd |
|- ( k e. NN0 -> ( ( 2 ^ k ) x. ( F ` ( 2 ^ k ) ) ) = 1 ) |
| 55 |
54
|
mpteq2ia |
|- ( k e. NN0 |-> ( ( 2 ^ k ) x. ( F ` ( 2 ^ k ) ) ) ) = ( k e. NN0 |-> 1 ) |
| 56 |
41 55
|
eqtr4i |
|- ( NN0 X. { 1 } ) = ( k e. NN0 |-> ( ( 2 ^ k ) x. ( F ` ( 2 ^ k ) ) ) ) |
| 57 |
|
ovex |
|- ( ( 2 ^ j ) x. ( F ` ( 2 ^ j ) ) ) e. _V |
| 58 |
40 56 57
|
fvmpt |
|- ( j e. NN0 -> ( ( NN0 X. { 1 } ) ` j ) = ( ( 2 ^ j ) x. ( F ` ( 2 ^ j ) ) ) ) |
| 59 |
58
|
adantl |
|- ( ( H e. dom ~~> /\ j e. NN0 ) -> ( ( NN0 X. { 1 } ) ` j ) = ( ( 2 ^ j ) x. ( F ` ( 2 ^ j ) ) ) ) |
| 60 |
16 21 37 59
|
climcnds |
|- ( H e. dom ~~> -> ( seq 1 ( + , F ) e. dom ~~> <-> seq 0 ( + , ( NN0 X. { 1 } ) ) e. dom ~~> ) ) |
| 61 |
10 60
|
mpbid |
|- ( H e. dom ~~> -> seq 0 ( + , ( NN0 X. { 1 } ) ) e. dom ~~> ) |
| 62 |
3 4 7 8 61
|
isumrecl |
|- ( H e. dom ~~> -> sum_ k e. NN0 1 e. RR ) |
| 63 |
|
arch |
|- ( sum_ k e. NN0 1 e. RR -> E. j e. NN sum_ k e. NN0 1 < j ) |
| 64 |
62 63
|
syl |
|- ( H e. dom ~~> -> E. j e. NN sum_ k e. NN0 1 < j ) |
| 65 |
|
fzfid |
|- ( ( H e. dom ~~> /\ j e. NN ) -> ( 1 ... j ) e. Fin ) |
| 66 |
|
ax-1cn |
|- 1 e. CC |
| 67 |
|
fsumconst |
|- ( ( ( 1 ... j ) e. Fin /\ 1 e. CC ) -> sum_ k e. ( 1 ... j ) 1 = ( ( # ` ( 1 ... j ) ) x. 1 ) ) |
| 68 |
65 66 67
|
sylancl |
|- ( ( H e. dom ~~> /\ j e. NN ) -> sum_ k e. ( 1 ... j ) 1 = ( ( # ` ( 1 ... j ) ) x. 1 ) ) |
| 69 |
|
nnnn0 |
|- ( j e. NN -> j e. NN0 ) |
| 70 |
69
|
adantl |
|- ( ( H e. dom ~~> /\ j e. NN ) -> j e. NN0 ) |
| 71 |
|
hashfz1 |
|- ( j e. NN0 -> ( # ` ( 1 ... j ) ) = j ) |
| 72 |
70 71
|
syl |
|- ( ( H e. dom ~~> /\ j e. NN ) -> ( # ` ( 1 ... j ) ) = j ) |
| 73 |
72
|
oveq1d |
|- ( ( H e. dom ~~> /\ j e. NN ) -> ( ( # ` ( 1 ... j ) ) x. 1 ) = ( j x. 1 ) ) |
| 74 |
|
nncn |
|- ( j e. NN -> j e. CC ) |
| 75 |
74
|
adantl |
|- ( ( H e. dom ~~> /\ j e. NN ) -> j e. CC ) |
| 76 |
75
|
mulridd |
|- ( ( H e. dom ~~> /\ j e. NN ) -> ( j x. 1 ) = j ) |
| 77 |
68 73 76
|
3eqtrd |
|- ( ( H e. dom ~~> /\ j e. NN ) -> sum_ k e. ( 1 ... j ) 1 = j ) |
| 78 |
|
0zd |
|- ( ( H e. dom ~~> /\ j e. NN ) -> 0 e. ZZ ) |
| 79 |
|
elfznn |
|- ( k e. ( 1 ... j ) -> k e. NN ) |
| 80 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 81 |
79 80
|
syl |
|- ( k e. ( 1 ... j ) -> k e. NN0 ) |
| 82 |
81
|
ssriv |
|- ( 1 ... j ) C_ NN0 |
| 83 |
82
|
a1i |
|- ( ( H e. dom ~~> /\ j e. NN ) -> ( 1 ... j ) C_ NN0 ) |
| 84 |
6
|
adantl |
|- ( ( ( H e. dom ~~> /\ j e. NN ) /\ k e. NN0 ) -> ( ( NN0 X. { 1 } ) ` k ) = 1 ) |
| 85 |
|
1red |
|- ( ( ( H e. dom ~~> /\ j e. NN ) /\ k e. NN0 ) -> 1 e. RR ) |
| 86 |
|
0le1 |
|- 0 <_ 1 |
| 87 |
86
|
a1i |
|- ( ( ( H e. dom ~~> /\ j e. NN ) /\ k e. NN0 ) -> 0 <_ 1 ) |
| 88 |
61
|
adantr |
|- ( ( H e. dom ~~> /\ j e. NN ) -> seq 0 ( + , ( NN0 X. { 1 } ) ) e. dom ~~> ) |
| 89 |
3 78 65 83 84 85 87 88
|
isumless |
|- ( ( H e. dom ~~> /\ j e. NN ) -> sum_ k e. ( 1 ... j ) 1 <_ sum_ k e. NN0 1 ) |
| 90 |
77 89
|
eqbrtrrd |
|- ( ( H e. dom ~~> /\ j e. NN ) -> j <_ sum_ k e. NN0 1 ) |
| 91 |
|
nnre |
|- ( j e. NN -> j e. RR ) |
| 92 |
|
lenlt |
|- ( ( j e. RR /\ sum_ k e. NN0 1 e. RR ) -> ( j <_ sum_ k e. NN0 1 <-> -. sum_ k e. NN0 1 < j ) ) |
| 93 |
91 62 92
|
syl2anr |
|- ( ( H e. dom ~~> /\ j e. NN ) -> ( j <_ sum_ k e. NN0 1 <-> -. sum_ k e. NN0 1 < j ) ) |
| 94 |
90 93
|
mpbid |
|- ( ( H e. dom ~~> /\ j e. NN ) -> -. sum_ k e. NN0 1 < j ) |
| 95 |
94
|
nrexdv |
|- ( H e. dom ~~> -> -. E. j e. NN sum_ k e. NN0 1 < j ) |
| 96 |
64 95
|
pm2.65i |
|- -. H e. dom ~~> |