| Step |
Hyp |
Ref |
Expression |
| 1 |
|
harmonic.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( 1 / 𝑛 ) ) |
| 2 |
|
harmonic.2 |
⊢ 𝐻 = seq 1 ( + , 𝐹 ) |
| 3 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 4 |
|
0zd |
⊢ ( 𝐻 ∈ dom ⇝ → 0 ∈ ℤ ) |
| 5 |
|
1ex |
⊢ 1 ∈ V |
| 6 |
5
|
fvconst2 |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ℕ0 × { 1 } ) ‘ 𝑘 ) = 1 ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0 ) → ( ( ℕ0 × { 1 } ) ‘ 𝑘 ) = 1 ) |
| 8 |
|
1red |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℝ ) |
| 9 |
2
|
eleq1i |
⊢ ( 𝐻 ∈ dom ⇝ ↔ seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 10 |
9
|
biimpi |
⊢ ( 𝐻 ∈ dom ⇝ → seq 1 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 11 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 1 / 𝑛 ) = ( 1 / 𝑘 ) ) |
| 12 |
|
ovex |
⊢ ( 1 / 𝑘 ) ∈ V |
| 13 |
11 1 12
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = ( 1 / 𝑘 ) ) |
| 14 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
| 15 |
13 14
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 17 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 18 |
17
|
rpreccld |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ+ ) |
| 19 |
18
|
rpge0d |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 1 / 𝑘 ) ) |
| 20 |
19 13
|
breqtrrd |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 22 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
| 23 |
22
|
lep1d |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≤ ( 𝑘 + 1 ) ) |
| 24 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
| 25 |
|
peano2re |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) |
| 26 |
22 25
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℝ ) |
| 27 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
| 28 |
27
|
nngt0d |
⊢ ( 𝑘 ∈ ℕ → 0 < ( 𝑘 + 1 ) ) |
| 29 |
|
lerec |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ∧ ( ( 𝑘 + 1 ) ∈ ℝ ∧ 0 < ( 𝑘 + 1 ) ) ) → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) |
| 30 |
22 24 26 28 29
|
syl22anc |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ≤ ( 𝑘 + 1 ) ↔ ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) ) |
| 31 |
23 30
|
mpbid |
⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 𝑘 + 1 ) ) ≤ ( 1 / 𝑘 ) ) |
| 32 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 / 𝑛 ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 33 |
|
ovex |
⊢ ( 1 / ( 𝑘 + 1 ) ) ∈ V |
| 34 |
32 1 33
|
fvmpt |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 35 |
27 34
|
syl |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 1 / ( 𝑘 + 1 ) ) ) |
| 36 |
31 35 13
|
3brtr4d |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 38 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑗 ) ) |
| 39 |
38
|
fveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) = ( 𝐹 ‘ ( 2 ↑ 𝑗 ) ) ) |
| 40 |
38 39
|
oveq12d |
⊢ ( 𝑘 = 𝑗 → ( ( 2 ↑ 𝑘 ) · ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) ) = ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ 𝑗 ) ) ) ) |
| 41 |
|
fconstmpt |
⊢ ( ℕ0 × { 1 } ) = ( 𝑘 ∈ ℕ0 ↦ 1 ) |
| 42 |
|
2nn |
⊢ 2 ∈ ℕ |
| 43 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 44 |
42 43
|
mpan |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 45 |
|
oveq2 |
⊢ ( 𝑛 = ( 2 ↑ 𝑘 ) → ( 1 / 𝑛 ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 46 |
|
ovex |
⊢ ( 1 / ( 2 ↑ 𝑘 ) ) ∈ V |
| 47 |
45 1 46
|
fvmpt |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℕ → ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 48 |
44 47
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 49 |
48
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 ↑ 𝑘 ) · ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) ) = ( ( 2 ↑ 𝑘 ) · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 50 |
|
nncn |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℕ → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
| 51 |
|
nnne0 |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℕ → ( 2 ↑ 𝑘 ) ≠ 0 ) |
| 52 |
50 51
|
recidd |
⊢ ( ( 2 ↑ 𝑘 ) ∈ ℕ → ( ( 2 ↑ 𝑘 ) · ( 1 / ( 2 ↑ 𝑘 ) ) ) = 1 ) |
| 53 |
44 52
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 ↑ 𝑘 ) · ( 1 / ( 2 ↑ 𝑘 ) ) ) = 1 ) |
| 54 |
49 53
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 ↑ 𝑘 ) · ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) ) = 1 ) |
| 55 |
54
|
mpteq2ia |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑘 ) · ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ 1 ) |
| 56 |
41 55
|
eqtr4i |
⊢ ( ℕ0 × { 1 } ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑘 ) · ( 𝐹 ‘ ( 2 ↑ 𝑘 ) ) ) ) |
| 57 |
|
ovex |
⊢ ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ 𝑗 ) ) ) ∈ V |
| 58 |
40 56 57
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( ℕ0 × { 1 } ) ‘ 𝑗 ) = ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ 𝑗 ) ) ) ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ0 ) → ( ( ℕ0 × { 1 } ) ‘ 𝑗 ) = ( ( 2 ↑ 𝑗 ) · ( 𝐹 ‘ ( 2 ↑ 𝑗 ) ) ) ) |
| 60 |
16 21 37 59
|
climcnds |
⊢ ( 𝐻 ∈ dom ⇝ → ( seq 1 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 0 ( + , ( ℕ0 × { 1 } ) ) ∈ dom ⇝ ) ) |
| 61 |
10 60
|
mpbid |
⊢ ( 𝐻 ∈ dom ⇝ → seq 0 ( + , ( ℕ0 × { 1 } ) ) ∈ dom ⇝ ) |
| 62 |
3 4 7 8 61
|
isumrecl |
⊢ ( 𝐻 ∈ dom ⇝ → Σ 𝑘 ∈ ℕ0 1 ∈ ℝ ) |
| 63 |
|
arch |
⊢ ( Σ 𝑘 ∈ ℕ0 1 ∈ ℝ → ∃ 𝑗 ∈ ℕ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) |
| 64 |
62 63
|
syl |
⊢ ( 𝐻 ∈ dom ⇝ → ∃ 𝑗 ∈ ℕ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) |
| 65 |
|
fzfid |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 1 ... 𝑗 ) ∈ Fin ) |
| 66 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 67 |
|
fsumconst |
⊢ ( ( ( 1 ... 𝑗 ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑗 ) 1 = ( ( ♯ ‘ ( 1 ... 𝑗 ) ) · 1 ) ) |
| 68 |
65 66 67
|
sylancl |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑗 ) 1 = ( ( ♯ ‘ ( 1 ... 𝑗 ) ) · 1 ) ) |
| 69 |
|
nnnn0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) |
| 70 |
69
|
adantl |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
| 71 |
|
hashfz1 |
⊢ ( 𝑗 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑗 ) ) = 𝑗 ) |
| 72 |
70 71
|
syl |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( ♯ ‘ ( 1 ... 𝑗 ) ) = 𝑗 ) |
| 73 |
72
|
oveq1d |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( ( ♯ ‘ ( 1 ... 𝑗 ) ) · 1 ) = ( 𝑗 · 1 ) ) |
| 74 |
|
nncn |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) |
| 75 |
74
|
adantl |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℂ ) |
| 76 |
75
|
mulridd |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 · 1 ) = 𝑗 ) |
| 77 |
68 73 76
|
3eqtrd |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑗 ) 1 = 𝑗 ) |
| 78 |
|
0zd |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 0 ∈ ℤ ) |
| 79 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑗 ) → 𝑘 ∈ ℕ ) |
| 80 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 81 |
79 80
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... 𝑗 ) → 𝑘 ∈ ℕ0 ) |
| 82 |
81
|
ssriv |
⊢ ( 1 ... 𝑗 ) ⊆ ℕ0 |
| 83 |
82
|
a1i |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 1 ... 𝑗 ) ⊆ ℕ0 ) |
| 84 |
6
|
adantl |
⊢ ( ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ℕ0 × { 1 } ) ‘ 𝑘 ) = 1 ) |
| 85 |
|
1red |
⊢ ( ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℝ ) |
| 86 |
|
0le1 |
⊢ 0 ≤ 1 |
| 87 |
86
|
a1i |
⊢ ( ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ℕ0 ) → 0 ≤ 1 ) |
| 88 |
61
|
adantr |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → seq 0 ( + , ( ℕ0 × { 1 } ) ) ∈ dom ⇝ ) |
| 89 |
3 78 65 83 84 85 87 88
|
isumless |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → Σ 𝑘 ∈ ( 1 ... 𝑗 ) 1 ≤ Σ 𝑘 ∈ ℕ0 1 ) |
| 90 |
77 89
|
eqbrtrrd |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → 𝑗 ≤ Σ 𝑘 ∈ ℕ0 1 ) |
| 91 |
|
nnre |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℝ ) |
| 92 |
|
lenlt |
⊢ ( ( 𝑗 ∈ ℝ ∧ Σ 𝑘 ∈ ℕ0 1 ∈ ℝ ) → ( 𝑗 ≤ Σ 𝑘 ∈ ℕ0 1 ↔ ¬ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) ) |
| 93 |
91 62 92
|
syl2anr |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ( 𝑗 ≤ Σ 𝑘 ∈ ℕ0 1 ↔ ¬ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) ) |
| 94 |
90 93
|
mpbid |
⊢ ( ( 𝐻 ∈ dom ⇝ ∧ 𝑗 ∈ ℕ ) → ¬ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) |
| 95 |
94
|
nrexdv |
⊢ ( 𝐻 ∈ dom ⇝ → ¬ ∃ 𝑗 ∈ ℕ Σ 𝑘 ∈ ℕ0 1 < 𝑗 ) |
| 96 |
64 95
|
pm2.65i |
⊢ ¬ 𝐻 ∈ dom ⇝ |