| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlrelat5.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | hlrelat5.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | hlrelat5.s |  |-  .< = ( lt ` K ) | 
						
							| 4 |  | hlrelat5.j |  |-  .\/ = ( join ` K ) | 
						
							| 5 |  | hlrelat5.a |  |-  A = ( Atoms ` K ) | 
						
							| 6 | 1 2 3 5 | hlrelat1 |  |-  ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( X .< Y -> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ X .< Y ) -> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) | 
						
							| 8 |  | hllat |  |-  ( K e. HL -> K e. Lat ) | 
						
							| 9 |  | id |  |-  ( X e. B -> X e. B ) | 
						
							| 10 | 1 5 | atbase |  |-  ( p e. A -> p e. B ) | 
						
							| 11 |  | ovexd |  |-  ( p e. B -> ( X .\/ p ) e. _V ) | 
						
							| 12 | 2 3 | pltval |  |-  ( ( K e. Lat /\ X e. B /\ ( X .\/ p ) e. _V ) -> ( X .< ( X .\/ p ) <-> ( X .<_ ( X .\/ p ) /\ X =/= ( X .\/ p ) ) ) ) | 
						
							| 13 | 11 12 | syl3an3 |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( X .< ( X .\/ p ) <-> ( X .<_ ( X .\/ p ) /\ X =/= ( X .\/ p ) ) ) ) | 
						
							| 14 | 1 2 4 | latlej1 |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> X .<_ ( X .\/ p ) ) | 
						
							| 15 | 14 | biantrurd |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( X =/= ( X .\/ p ) <-> ( X .<_ ( X .\/ p ) /\ X =/= ( X .\/ p ) ) ) ) | 
						
							| 16 | 13 15 | bitr4d |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( X .< ( X .\/ p ) <-> X =/= ( X .\/ p ) ) ) | 
						
							| 17 | 1 2 4 | latleeqj1 |  |-  ( ( K e. Lat /\ p e. B /\ X e. B ) -> ( p .<_ X <-> ( p .\/ X ) = X ) ) | 
						
							| 18 | 17 | 3com23 |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( p .<_ X <-> ( p .\/ X ) = X ) ) | 
						
							| 19 | 1 4 | latjcom |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( X .\/ p ) = ( p .\/ X ) ) | 
						
							| 20 | 19 | eqeq1d |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( ( X .\/ p ) = X <-> ( p .\/ X ) = X ) ) | 
						
							| 21 | 18 20 | bitr4d |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( p .<_ X <-> ( X .\/ p ) = X ) ) | 
						
							| 22 | 21 | notbid |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( -. p .<_ X <-> -. ( X .\/ p ) = X ) ) | 
						
							| 23 |  | nesym |  |-  ( X =/= ( X .\/ p ) <-> -. ( X .\/ p ) = X ) | 
						
							| 24 | 22 23 | bitr4di |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( -. p .<_ X <-> X =/= ( X .\/ p ) ) ) | 
						
							| 25 | 16 24 | bitr4d |  |-  ( ( K e. Lat /\ X e. B /\ p e. B ) -> ( X .< ( X .\/ p ) <-> -. p .<_ X ) ) | 
						
							| 26 | 8 9 10 25 | syl3an |  |-  ( ( K e. HL /\ X e. B /\ p e. A ) -> ( X .< ( X .\/ p ) <-> -. p .<_ X ) ) | 
						
							| 27 | 26 | 3expa |  |-  ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( X .< ( X .\/ p ) <-> -. p .<_ X ) ) | 
						
							| 28 | 27 | anbi1d |  |-  ( ( ( K e. HL /\ X e. B ) /\ p e. A ) -> ( ( X .< ( X .\/ p ) /\ p .<_ Y ) <-> ( -. p .<_ X /\ p .<_ Y ) ) ) | 
						
							| 29 | 28 | rexbidva |  |-  ( ( K e. HL /\ X e. B ) -> ( E. p e. A ( X .< ( X .\/ p ) /\ p .<_ Y ) <-> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) ) | 
						
							| 30 | 29 | 3adant3 |  |-  ( ( K e. HL /\ X e. B /\ Y e. B ) -> ( E. p e. A ( X .< ( X .\/ p ) /\ p .<_ Y ) <-> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ X .< Y ) -> ( E. p e. A ( X .< ( X .\/ p ) /\ p .<_ Y ) <-> E. p e. A ( -. p .<_ X /\ p .<_ Y ) ) ) | 
						
							| 32 | 7 31 | mpbird |  |-  ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ X .< Y ) -> E. p e. A ( X .< ( X .\/ p ) /\ p .<_ Y ) ) |