| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlrelat5.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | hlrelat5.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | hlrelat5.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 4 |  | hlrelat5.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 5 |  | hlrelat5.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 | 1 2 3 5 | hlrelat1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  →  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) ) ) | 
						
							| 7 | 6 | imp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) ) | 
						
							| 8 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 9 |  | id | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  𝐵 ) | 
						
							| 10 | 1 5 | atbase | ⊢ ( 𝑝  ∈  𝐴  →  𝑝  ∈  𝐵 ) | 
						
							| 11 |  | ovexd | ⊢ ( 𝑝  ∈  𝐵  →  ( 𝑋  ∨  𝑝 )  ∈  V ) | 
						
							| 12 | 2 3 | pltval | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑋  ∨  𝑝 )  ∈  V )  →  ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ↔  ( 𝑋  ≤  ( 𝑋  ∨  𝑝 )  ∧  𝑋  ≠  ( 𝑋  ∨  𝑝 ) ) ) ) | 
						
							| 13 | 11 12 | syl3an3 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ↔  ( 𝑋  ≤  ( 𝑋  ∨  𝑝 )  ∧  𝑋  ≠  ( 𝑋  ∨  𝑝 ) ) ) ) | 
						
							| 14 | 1 2 4 | latlej1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  𝑋  ≤  ( 𝑋  ∨  𝑝 ) ) | 
						
							| 15 | 14 | biantrurd | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( 𝑋  ≠  ( 𝑋  ∨  𝑝 )  ↔  ( 𝑋  ≤  ( 𝑋  ∨  𝑝 )  ∧  𝑋  ≠  ( 𝑋  ∨  𝑝 ) ) ) ) | 
						
							| 16 | 13 15 | bitr4d | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ↔  𝑋  ≠  ( 𝑋  ∨  𝑝 ) ) ) | 
						
							| 17 | 1 2 4 | latleeqj1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑝  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑝  ≤  𝑋  ↔  ( 𝑝  ∨  𝑋 )  =  𝑋 ) ) | 
						
							| 18 | 17 | 3com23 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( 𝑝  ≤  𝑋  ↔  ( 𝑝  ∨  𝑋 )  =  𝑋 ) ) | 
						
							| 19 | 1 4 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( 𝑋  ∨  𝑝 )  =  ( 𝑝  ∨  𝑋 ) ) | 
						
							| 20 | 19 | eqeq1d | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( ( 𝑋  ∨  𝑝 )  =  𝑋  ↔  ( 𝑝  ∨  𝑋 )  =  𝑋 ) ) | 
						
							| 21 | 18 20 | bitr4d | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( 𝑝  ≤  𝑋  ↔  ( 𝑋  ∨  𝑝 )  =  𝑋 ) ) | 
						
							| 22 | 21 | notbid | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( ¬  𝑝  ≤  𝑋  ↔  ¬  ( 𝑋  ∨  𝑝 )  =  𝑋 ) ) | 
						
							| 23 |  | nesym | ⊢ ( 𝑋  ≠  ( 𝑋  ∨  𝑝 )  ↔  ¬  ( 𝑋  ∨  𝑝 )  =  𝑋 ) | 
						
							| 24 | 22 23 | bitr4di | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( ¬  𝑝  ≤  𝑋  ↔  𝑋  ≠  ( 𝑋  ∨  𝑝 ) ) ) | 
						
							| 25 | 16 24 | bitr4d | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ↔  ¬  𝑝  ≤  𝑋 ) ) | 
						
							| 26 | 8 9 10 25 | syl3an | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑝  ∈  𝐴 )  →  ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ↔  ¬  𝑝  ≤  𝑋 ) ) | 
						
							| 27 | 26 | 3expa | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ↔  ¬  𝑝  ≤  𝑋 ) ) | 
						
							| 28 | 27 | anbi1d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  ∧  𝑝  ∈  𝐴 )  →  ( ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ∧  𝑝  ≤  𝑌 )  ↔  ( ¬  𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) ) ) | 
						
							| 29 | 28 | rexbidva | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  →  ( ∃ 𝑝  ∈  𝐴 ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ∧  𝑝  ≤  𝑌 )  ↔  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) ) ) | 
						
							| 30 | 29 | 3adant3 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ∃ 𝑝  ∈  𝐴 ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ∧  𝑝  ≤  𝑌 )  ↔  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ( ∃ 𝑝  ∈  𝐴 ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ∧  𝑝  ≤  𝑌 )  ↔  ∃ 𝑝  ∈  𝐴 ( ¬  𝑝  ≤  𝑋  ∧  𝑝  ≤  𝑌 ) ) ) | 
						
							| 32 | 7 31 | mpbird | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ∃ 𝑝  ∈  𝐴 ( 𝑋  <  ( 𝑋  ∨  𝑝 )  ∧  𝑝  ≤  𝑌 ) ) |