| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> A e. CC ) |
| 2 |
|
ffvelcdm |
|- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
| 3 |
2
|
3ad2antl2 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
| 4 |
|
ffvelcdm |
|- ( ( U : ~H --> ~H /\ x e. ~H ) -> ( U ` x ) e. ~H ) |
| 5 |
4
|
3ad2antl3 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( U ` x ) e. ~H ) |
| 6 |
|
ax-hvdistr1 |
|- ( ( A e. CC /\ ( T ` x ) e. ~H /\ ( U ` x ) e. ~H ) -> ( A .h ( ( T ` x ) +h ( U ` x ) ) ) = ( ( A .h ( T ` x ) ) +h ( A .h ( U ` x ) ) ) ) |
| 7 |
1 3 5 6
|
syl3anc |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T ` x ) +h ( U ` x ) ) ) = ( ( A .h ( T ` x ) ) +h ( A .h ( U ` x ) ) ) ) |
| 8 |
|
hosval |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H /\ x e. ~H ) -> ( ( T +op U ) ` x ) = ( ( T ` x ) +h ( U ` x ) ) ) |
| 9 |
8
|
oveq2d |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( A .h ( ( T ` x ) +h ( U ` x ) ) ) ) |
| 10 |
9
|
3expa |
|- ( ( ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( A .h ( ( T ` x ) +h ( U ` x ) ) ) ) |
| 11 |
10
|
3adantl1 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( A .h ( ( T ` x ) +h ( U ` x ) ) ) ) |
| 12 |
|
homval |
|- ( ( A e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 13 |
12
|
3expa |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 14 |
13
|
3adantl3 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 15 |
|
homval |
|- ( ( A e. CC /\ U : ~H --> ~H /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
| 16 |
15
|
3expa |
|- ( ( ( A e. CC /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
| 17 |
16
|
3adantl2 |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
| 18 |
14 17
|
oveq12d |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) = ( ( A .h ( T ` x ) ) +h ( A .h ( U ` x ) ) ) ) |
| 19 |
7 11 18
|
3eqtr4d |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
| 20 |
|
hoaddcl |
|- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T +op U ) : ~H --> ~H ) |
| 21 |
20
|
anim2i |
|- ( ( A e. CC /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( A e. CC /\ ( T +op U ) : ~H --> ~H ) ) |
| 22 |
21
|
3impb |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A e. CC /\ ( T +op U ) : ~H --> ~H ) ) |
| 23 |
|
homval |
|- ( ( A e. CC /\ ( T +op U ) : ~H --> ~H /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( A .h ( ( T +op U ) ` x ) ) ) |
| 24 |
23
|
3expa |
|- ( ( ( A e. CC /\ ( T +op U ) : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( A .h ( ( T +op U ) ` x ) ) ) |
| 25 |
22 24
|
sylan |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( A .h ( ( T +op U ) ` x ) ) ) |
| 26 |
|
homulcl |
|- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |
| 27 |
|
homulcl |
|- ( ( A e. CC /\ U : ~H --> ~H ) -> ( A .op U ) : ~H --> ~H ) |
| 28 |
26 27
|
anim12i |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ ( A e. CC /\ U : ~H --> ~H ) ) -> ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) ) |
| 29 |
28
|
3impdi |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) ) |
| 30 |
|
hosval |
|- ( ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( A .op T ) +op ( A .op U ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
| 31 |
30
|
3expa |
|- ( ( ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) +op ( A .op U ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
| 32 |
29 31
|
sylan |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) +op ( A .op U ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
| 33 |
19 25 32
|
3eqtr4d |
|- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) ) |
| 34 |
33
|
ralrimiva |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> A. x e. ~H ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) ) |
| 35 |
|
homulcl |
|- ( ( A e. CC /\ ( T +op U ) : ~H --> ~H ) -> ( A .op ( T +op U ) ) : ~H --> ~H ) |
| 36 |
20 35
|
sylan2 |
|- ( ( A e. CC /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( A .op ( T +op U ) ) : ~H --> ~H ) |
| 37 |
36
|
3impb |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op U ) ) : ~H --> ~H ) |
| 38 |
|
hoaddcl |
|- ( ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) -> ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) |
| 39 |
26 27 38
|
syl2an |
|- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ ( A e. CC /\ U : ~H --> ~H ) ) -> ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) |
| 40 |
39
|
3impdi |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) |
| 41 |
|
hoeq |
|- ( ( ( A .op ( T +op U ) ) : ~H --> ~H /\ ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) -> ( A. x e. ~H ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) <-> ( A .op ( T +op U ) ) = ( ( A .op T ) +op ( A .op U ) ) ) ) |
| 42 |
37 40 41
|
syl2anc |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A. x e. ~H ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) <-> ( A .op ( T +op U ) ) = ( ( A .op T ) +op ( A .op U ) ) ) ) |
| 43 |
34 42
|
mpbid |
|- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op U ) ) = ( ( A .op T ) +op ( A .op U ) ) ) |