| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icossicc |
|- ( A [,) B ) C_ ( A [,] B ) |
| 2 |
1
|
a1i |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A [,) B ) C_ ( A [,] B ) ) |
| 3 |
2
|
sselda |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> x e. ( A [,] B ) ) |
| 4 |
|
elico1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR* /\ A <_ x /\ x < B ) ) ) |
| 5 |
4
|
biimpa |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> ( x e. RR* /\ A <_ x /\ x < B ) ) |
| 6 |
5
|
simp1d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> x e. RR* ) |
| 7 |
|
simplr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> B e. RR* ) |
| 8 |
5
|
simp3d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> x < B ) |
| 9 |
|
xrltne |
|- ( ( x e. RR* /\ B e. RR* /\ x < B ) -> B =/= x ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> B =/= x ) |
| 11 |
10
|
necomd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> x =/= B ) |
| 12 |
11
|
neneqd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> -. x = B ) |
| 13 |
|
velsn |
|- ( x e. { B } <-> x = B ) |
| 14 |
12 13
|
sylnibr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> -. x e. { B } ) |
| 15 |
3 14
|
eldifd |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( A [,) B ) ) -> x e. ( ( A [,] B ) \ { B } ) ) |
| 16 |
15
|
ex |
|- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,) B ) -> x e. ( ( A [,] B ) \ { B } ) ) ) |
| 17 |
16
|
ssrdv |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A [,) B ) C_ ( ( A [,] B ) \ { B } ) ) |
| 18 |
|
simpll |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> A e. RR* ) |
| 19 |
|
simplr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> B e. RR* ) |
| 20 |
|
eldifi |
|- ( x e. ( ( A [,] B ) \ { B } ) -> x e. ( A [,] B ) ) |
| 21 |
|
eliccxr |
|- ( x e. ( A [,] B ) -> x e. RR* ) |
| 22 |
20 21
|
syl |
|- ( x e. ( ( A [,] B ) \ { B } ) -> x e. RR* ) |
| 23 |
22
|
adantl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> x e. RR* ) |
| 24 |
20
|
adantl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> x e. ( A [,] B ) ) |
| 25 |
|
elicc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ x /\ x <_ B ) ) ) |
| 26 |
25
|
adantr |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> ( x e. ( A [,] B ) <-> ( x e. RR* /\ A <_ x /\ x <_ B ) ) ) |
| 27 |
24 26
|
mpbid |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> ( x e. RR* /\ A <_ x /\ x <_ B ) ) |
| 28 |
27
|
simp2d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> A <_ x ) |
| 29 |
|
eldifsni |
|- ( x e. ( ( A [,] B ) \ { B } ) -> x =/= B ) |
| 30 |
29
|
necomd |
|- ( x e. ( ( A [,] B ) \ { B } ) -> B =/= x ) |
| 31 |
30
|
adantl |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> B =/= x ) |
| 32 |
27
|
simp3d |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> x <_ B ) |
| 33 |
|
xrleltne |
|- ( ( x e. RR* /\ B e. RR* /\ x <_ B ) -> ( x < B <-> B =/= x ) ) |
| 34 |
23 19 32 33
|
syl3anc |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> ( x < B <-> B =/= x ) ) |
| 35 |
31 34
|
mpbird |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> x < B ) |
| 36 |
18 19 23 28 35
|
elicod |
|- ( ( ( A e. RR* /\ B e. RR* ) /\ x e. ( ( A [,] B ) \ { B } ) ) -> x e. ( A [,) B ) ) |
| 37 |
17 36
|
eqelssd |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A [,) B ) = ( ( A [,] B ) \ { B } ) ) |