| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icoopn.a |
|- ( ph -> A e. RR ) |
| 2 |
|
icoopn.c |
|- ( ph -> C e. RR* ) |
| 3 |
|
icoopn.b |
|- ( ph -> B e. RR* ) |
| 4 |
|
icoopn.k |
|- K = ( topGen ` ran (,) ) |
| 5 |
|
icoopn.j |
|- J = ( K |`t ( A [,) B ) ) |
| 6 |
|
icoopn.cleb |
|- ( ph -> C <_ B ) |
| 7 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 8 |
4 7
|
eqeltri |
|- K e. Top |
| 9 |
8
|
a1i |
|- ( ph -> K e. Top ) |
| 10 |
|
ovexd |
|- ( ph -> ( A [,) B ) e. _V ) |
| 11 |
|
iooretop |
|- ( -oo (,) C ) e. ( topGen ` ran (,) ) |
| 12 |
11 4
|
eleqtrri |
|- ( -oo (,) C ) e. K |
| 13 |
12
|
a1i |
|- ( ph -> ( -oo (,) C ) e. K ) |
| 14 |
|
elrestr |
|- ( ( K e. Top /\ ( A [,) B ) e. _V /\ ( -oo (,) C ) e. K ) -> ( ( -oo (,) C ) i^i ( A [,) B ) ) e. ( K |`t ( A [,) B ) ) ) |
| 15 |
9 10 13 14
|
syl3anc |
|- ( ph -> ( ( -oo (,) C ) i^i ( A [,) B ) ) e. ( K |`t ( A [,) B ) ) ) |
| 16 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> A e. RR* ) |
| 18 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> C e. RR* ) |
| 19 |
|
elinel1 |
|- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. ( -oo (,) C ) ) |
| 20 |
|
elioore |
|- ( x e. ( -oo (,) C ) -> x e. RR ) |
| 21 |
19 20
|
syl |
|- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. RR ) |
| 22 |
21
|
rexrd |
|- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. RR* ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. RR* ) |
| 24 |
3
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> B e. RR* ) |
| 25 |
|
elinel2 |
|- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. ( A [,) B ) ) |
| 26 |
25
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( A [,) B ) ) |
| 27 |
|
icogelb |
|- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,) B ) ) -> A <_ x ) |
| 28 |
17 24 26 27
|
syl3anc |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> A <_ x ) |
| 29 |
|
mnfxr |
|- -oo e. RR* |
| 30 |
29
|
a1i |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> -oo e. RR* ) |
| 31 |
19
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( -oo (,) C ) ) |
| 32 |
|
iooltub |
|- ( ( -oo e. RR* /\ C e. RR* /\ x e. ( -oo (,) C ) ) -> x < C ) |
| 33 |
30 18 31 32
|
syl3anc |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x < C ) |
| 34 |
17 18 23 28 33
|
elicod |
|- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( A [,) C ) ) |
| 35 |
29
|
a1i |
|- ( ( ph /\ x e. ( A [,) C ) ) -> -oo e. RR* ) |
| 36 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,) C ) ) -> C e. RR* ) |
| 37 |
|
icossre |
|- ( ( A e. RR /\ C e. RR* ) -> ( A [,) C ) C_ RR ) |
| 38 |
1 2 37
|
syl2anc |
|- ( ph -> ( A [,) C ) C_ RR ) |
| 39 |
38
|
sselda |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. RR ) |
| 40 |
39
|
mnfltd |
|- ( ( ph /\ x e. ( A [,) C ) ) -> -oo < x ) |
| 41 |
16
|
adantr |
|- ( ( ph /\ x e. ( A [,) C ) ) -> A e. RR* ) |
| 42 |
|
simpr |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( A [,) C ) ) |
| 43 |
|
icoltub |
|- ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,) C ) ) -> x < C ) |
| 44 |
41 36 42 43
|
syl3anc |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x < C ) |
| 45 |
35 36 39 40 44
|
eliood |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( -oo (,) C ) ) |
| 46 |
3
|
adantr |
|- ( ( ph /\ x e. ( A [,) C ) ) -> B e. RR* ) |
| 47 |
39
|
rexrd |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. RR* ) |
| 48 |
|
icogelb |
|- ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,) C ) ) -> A <_ x ) |
| 49 |
41 36 42 48
|
syl3anc |
|- ( ( ph /\ x e. ( A [,) C ) ) -> A <_ x ) |
| 50 |
6
|
adantr |
|- ( ( ph /\ x e. ( A [,) C ) ) -> C <_ B ) |
| 51 |
47 36 46 44 50
|
xrltletrd |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x < B ) |
| 52 |
41 46 47 49 51
|
elicod |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( A [,) B ) ) |
| 53 |
45 52
|
elind |
|- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) |
| 54 |
34 53
|
impbida |
|- ( ph -> ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) <-> x e. ( A [,) C ) ) ) |
| 55 |
54
|
eqrdv |
|- ( ph -> ( ( -oo (,) C ) i^i ( A [,) B ) ) = ( A [,) C ) ) |
| 56 |
5
|
eqcomi |
|- ( K |`t ( A [,) B ) ) = J |
| 57 |
56
|
a1i |
|- ( ph -> ( K |`t ( A [,) B ) ) = J ) |
| 58 |
15 55 57
|
3eltr3d |
|- ( ph -> ( A [,) C ) e. J ) |