Metamath Proof Explorer


Theorem icoopn

Description: A left-closed right-open interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses icoopn.a
|- ( ph -> A e. RR )
icoopn.c
|- ( ph -> C e. RR* )
icoopn.b
|- ( ph -> B e. RR* )
icoopn.k
|- K = ( topGen ` ran (,) )
icoopn.j
|- J = ( K |`t ( A [,) B ) )
icoopn.cleb
|- ( ph -> C <_ B )
Assertion icoopn
|- ( ph -> ( A [,) C ) e. J )

Proof

Step Hyp Ref Expression
1 icoopn.a
 |-  ( ph -> A e. RR )
2 icoopn.c
 |-  ( ph -> C e. RR* )
3 icoopn.b
 |-  ( ph -> B e. RR* )
4 icoopn.k
 |-  K = ( topGen ` ran (,) )
5 icoopn.j
 |-  J = ( K |`t ( A [,) B ) )
6 icoopn.cleb
 |-  ( ph -> C <_ B )
7 retop
 |-  ( topGen ` ran (,) ) e. Top
8 4 7 eqeltri
 |-  K e. Top
9 8 a1i
 |-  ( ph -> K e. Top )
10 ovexd
 |-  ( ph -> ( A [,) B ) e. _V )
11 iooretop
 |-  ( -oo (,) C ) e. ( topGen ` ran (,) )
12 11 4 eleqtrri
 |-  ( -oo (,) C ) e. K
13 12 a1i
 |-  ( ph -> ( -oo (,) C ) e. K )
14 elrestr
 |-  ( ( K e. Top /\ ( A [,) B ) e. _V /\ ( -oo (,) C ) e. K ) -> ( ( -oo (,) C ) i^i ( A [,) B ) ) e. ( K |`t ( A [,) B ) ) )
15 9 10 13 14 syl3anc
 |-  ( ph -> ( ( -oo (,) C ) i^i ( A [,) B ) ) e. ( K |`t ( A [,) B ) ) )
16 1 rexrd
 |-  ( ph -> A e. RR* )
17 16 adantr
 |-  ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> A e. RR* )
18 2 adantr
 |-  ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> C e. RR* )
19 elinel1
 |-  ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. ( -oo (,) C ) )
20 elioore
 |-  ( x e. ( -oo (,) C ) -> x e. RR )
21 19 20 syl
 |-  ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. RR )
22 21 rexrd
 |-  ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. RR* )
23 22 adantl
 |-  ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. RR* )
24 3 adantr
 |-  ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> B e. RR* )
25 elinel2
 |-  ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. ( A [,) B ) )
26 25 adantl
 |-  ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( A [,) B ) )
27 icogelb
 |-  ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,) B ) ) -> A <_ x )
28 17 24 26 27 syl3anc
 |-  ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> A <_ x )
29 mnfxr
 |-  -oo e. RR*
30 29 a1i
 |-  ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> -oo e. RR* )
31 19 adantl
 |-  ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( -oo (,) C ) )
32 iooltub
 |-  ( ( -oo e. RR* /\ C e. RR* /\ x e. ( -oo (,) C ) ) -> x < C )
33 30 18 31 32 syl3anc
 |-  ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x < C )
34 17 18 23 28 33 elicod
 |-  ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( A [,) C ) )
35 29 a1i
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> -oo e. RR* )
36 2 adantr
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> C e. RR* )
37 icossre
 |-  ( ( A e. RR /\ C e. RR* ) -> ( A [,) C ) C_ RR )
38 1 2 37 syl2anc
 |-  ( ph -> ( A [,) C ) C_ RR )
39 38 sselda
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> x e. RR )
40 39 mnfltd
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> -oo < x )
41 16 adantr
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> A e. RR* )
42 simpr
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( A [,) C ) )
43 icoltub
 |-  ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,) C ) ) -> x < C )
44 41 36 42 43 syl3anc
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> x < C )
45 35 36 39 40 44 eliood
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( -oo (,) C ) )
46 3 adantr
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> B e. RR* )
47 39 rexrd
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> x e. RR* )
48 icogelb
 |-  ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,) C ) ) -> A <_ x )
49 41 36 42 48 syl3anc
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> A <_ x )
50 6 adantr
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> C <_ B )
51 47 36 46 44 50 xrltletrd
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> x < B )
52 41 46 47 49 51 elicod
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( A [,) B ) )
53 45 52 elind
 |-  ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) )
54 34 53 impbida
 |-  ( ph -> ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) <-> x e. ( A [,) C ) ) )
55 54 eqrdv
 |-  ( ph -> ( ( -oo (,) C ) i^i ( A [,) B ) ) = ( A [,) C ) )
56 5 eqcomi
 |-  ( K |`t ( A [,) B ) ) = J
57 56 a1i
 |-  ( ph -> ( K |`t ( A [,) B ) ) = J )
58 15 55 57 3eltr3d
 |-  ( ph -> ( A [,) C ) e. J )