Step |
Hyp |
Ref |
Expression |
1 |
|
icoopn.a |
|
2 |
|
icoopn.c |
|
3 |
|
icoopn.b |
|
4 |
|
icoopn.k |
|
5 |
|
icoopn.j |
|
6 |
|
icoopn.cleb |
|
7 |
|
retop |
|
8 |
4 7
|
eqeltri |
|
9 |
8
|
a1i |
|
10 |
|
ovexd |
|
11 |
|
iooretop |
|
12 |
11 4
|
eleqtrri |
|
13 |
12
|
a1i |
|
14 |
|
elrestr |
|
15 |
9 10 13 14
|
syl3anc |
|
16 |
1
|
rexrd |
|
17 |
16
|
adantr |
|
18 |
2
|
adantr |
|
19 |
|
elinel1 |
|
20 |
|
elioore |
|
21 |
19 20
|
syl |
|
22 |
21
|
rexrd |
|
23 |
22
|
adantl |
|
24 |
3
|
adantr |
|
25 |
|
elinel2 |
|
26 |
25
|
adantl |
|
27 |
|
icogelb |
|
28 |
17 24 26 27
|
syl3anc |
|
29 |
|
mnfxr |
|
30 |
29
|
a1i |
|
31 |
19
|
adantl |
|
32 |
|
iooltub |
|
33 |
30 18 31 32
|
syl3anc |
|
34 |
17 18 23 28 33
|
elicod |
|
35 |
29
|
a1i |
|
36 |
2
|
adantr |
|
37 |
|
icossre |
|
38 |
1 2 37
|
syl2anc |
|
39 |
38
|
sselda |
|
40 |
39
|
mnfltd |
|
41 |
16
|
adantr |
|
42 |
|
simpr |
|
43 |
|
icoltub |
|
44 |
41 36 42 43
|
syl3anc |
|
45 |
35 36 39 40 44
|
eliood |
|
46 |
3
|
adantr |
|
47 |
39
|
rexrd |
|
48 |
|
icogelb |
|
49 |
41 36 42 48
|
syl3anc |
|
50 |
6
|
adantr |
|
51 |
47 36 46 44 50
|
xrltletrd |
|
52 |
41 46 47 49 51
|
elicod |
|
53 |
45 52
|
elind |
|
54 |
34 53
|
impbida |
|
55 |
54
|
eqrdv |
|
56 |
5
|
eqcomi |
|
57 |
56
|
a1i |
|
58 |
15 55 57
|
3eltr3d |
|