| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icoopn.a |
|
| 2 |
|
icoopn.c |
|
| 3 |
|
icoopn.b |
|
| 4 |
|
icoopn.k |
|
| 5 |
|
icoopn.j |
|
| 6 |
|
icoopn.cleb |
|
| 7 |
|
retop |
|
| 8 |
4 7
|
eqeltri |
|
| 9 |
8
|
a1i |
|
| 10 |
|
ovexd |
|
| 11 |
|
iooretop |
|
| 12 |
11 4
|
eleqtrri |
|
| 13 |
12
|
a1i |
|
| 14 |
|
elrestr |
|
| 15 |
9 10 13 14
|
syl3anc |
|
| 16 |
1
|
rexrd |
|
| 17 |
16
|
adantr |
|
| 18 |
2
|
adantr |
|
| 19 |
|
elinel1 |
|
| 20 |
|
elioore |
|
| 21 |
19 20
|
syl |
|
| 22 |
21
|
rexrd |
|
| 23 |
22
|
adantl |
|
| 24 |
3
|
adantr |
|
| 25 |
|
elinel2 |
|
| 26 |
25
|
adantl |
|
| 27 |
|
icogelb |
|
| 28 |
17 24 26 27
|
syl3anc |
|
| 29 |
|
mnfxr |
|
| 30 |
29
|
a1i |
|
| 31 |
19
|
adantl |
|
| 32 |
|
iooltub |
|
| 33 |
30 18 31 32
|
syl3anc |
|
| 34 |
17 18 23 28 33
|
elicod |
|
| 35 |
29
|
a1i |
|
| 36 |
2
|
adantr |
|
| 37 |
|
icossre |
|
| 38 |
1 2 37
|
syl2anc |
|
| 39 |
38
|
sselda |
|
| 40 |
39
|
mnfltd |
|
| 41 |
16
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
|
icoltub |
|
| 44 |
41 36 42 43
|
syl3anc |
|
| 45 |
35 36 39 40 44
|
eliood |
|
| 46 |
3
|
adantr |
|
| 47 |
39
|
rexrd |
|
| 48 |
|
icogelb |
|
| 49 |
41 36 42 48
|
syl3anc |
|
| 50 |
6
|
adantr |
|
| 51 |
47 36 46 44 50
|
xrltletrd |
|
| 52 |
41 46 47 49 51
|
elicod |
|
| 53 |
45 52
|
elind |
|
| 54 |
34 53
|
impbida |
|
| 55 |
54
|
eqrdv |
|
| 56 |
5
|
eqcomi |
|
| 57 |
56
|
a1i |
|
| 58 |
15 55 57
|
3eltr3d |
|