| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icossicc |
⊢ ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 2 |
1
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 3 |
2
|
sselda |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 4 |
|
elico1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 5 |
4
|
biimpa |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 6 |
5
|
simp1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
| 7 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 8 |
5
|
simp3d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 < 𝐵 ) |
| 9 |
|
xrltne |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 < 𝐵 ) → 𝐵 ≠ 𝑥 ) |
| 10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝐵 ≠ 𝑥 ) |
| 11 |
10
|
necomd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ≠ 𝐵 ) |
| 12 |
11
|
neneqd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → ¬ 𝑥 = 𝐵 ) |
| 13 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) |
| 14 |
12 13
|
sylnibr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → ¬ 𝑥 ∈ { 𝐵 } ) |
| 15 |
3 14
|
eldifd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) |
| 16 |
15
|
ex |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) → 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) ) |
| 17 |
16
|
ssrdv |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) |
| 18 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝐴 ∈ ℝ* ) |
| 19 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝐵 ∈ ℝ* ) |
| 20 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 21 |
|
eliccxr |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ∈ ℝ* ) |
| 22 |
20 21
|
syl |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) → 𝑥 ∈ ℝ* ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝑥 ∈ ℝ* ) |
| 24 |
20
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 25 |
|
elicc1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
| 27 |
24 26
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → ( 𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
| 28 |
27
|
simp2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝐴 ≤ 𝑥 ) |
| 29 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) → 𝑥 ≠ 𝐵 ) |
| 30 |
29
|
necomd |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) → 𝐵 ≠ 𝑥 ) |
| 31 |
30
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝐵 ≠ 𝑥 ) |
| 32 |
27
|
simp3d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝑥 ≤ 𝐵 ) |
| 33 |
|
xrleltne |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ≤ 𝐵 ) → ( 𝑥 < 𝐵 ↔ 𝐵 ≠ 𝑥 ) ) |
| 34 |
23 19 32 33
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → ( 𝑥 < 𝐵 ↔ 𝐵 ≠ 𝑥 ) ) |
| 35 |
31 34
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝑥 < 𝐵 ) |
| 36 |
18 19 23 28 35
|
elicod |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 37 |
17 36
|
eqelssd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) = ( ( 𝐴 [,] 𝐵 ) ∖ { 𝐵 } ) ) |