| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difexg |
|- ( _om e. _V -> ( _om \ { (/) } ) e. _V ) |
| 2 |
|
0ex |
|- (/) e. _V |
| 3 |
2
|
snid |
|- (/) e. { (/) } |
| 4 |
|
disj4 |
|- ( ( _om i^i { (/) } ) = (/) <-> -. ( _om \ { (/) } ) C. _om ) |
| 5 |
|
disj3 |
|- ( ( _om i^i { (/) } ) = (/) <-> _om = ( _om \ { (/) } ) ) |
| 6 |
4 5
|
bitr3i |
|- ( -. ( _om \ { (/) } ) C. _om <-> _om = ( _om \ { (/) } ) ) |
| 7 |
|
peano1 |
|- (/) e. _om |
| 8 |
|
eleq2 |
|- ( _om = ( _om \ { (/) } ) -> ( (/) e. _om <-> (/) e. ( _om \ { (/) } ) ) ) |
| 9 |
7 8
|
mpbii |
|- ( _om = ( _om \ { (/) } ) -> (/) e. ( _om \ { (/) } ) ) |
| 10 |
9
|
eldifbd |
|- ( _om = ( _om \ { (/) } ) -> -. (/) e. { (/) } ) |
| 11 |
6 10
|
sylbi |
|- ( -. ( _om \ { (/) } ) C. _om -> -. (/) e. { (/) } ) |
| 12 |
3 11
|
mt4 |
|- ( _om \ { (/) } ) C. _om |
| 13 |
|
unidif0 |
|- U. ( _om \ { (/) } ) = U. _om |
| 14 |
|
limom |
|- Lim _om |
| 15 |
|
limuni |
|- ( Lim _om -> _om = U. _om ) |
| 16 |
14 15
|
ax-mp |
|- _om = U. _om |
| 17 |
13 16
|
eqtr4i |
|- U. ( _om \ { (/) } ) = _om |
| 18 |
17
|
psseq2i |
|- ( ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) <-> ( _om \ { (/) } ) C. _om ) |
| 19 |
12 18
|
mpbir |
|- ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) |
| 20 |
|
psseq1 |
|- ( x = ( _om \ { (/) } ) -> ( x C. U. x <-> ( _om \ { (/) } ) C. U. x ) ) |
| 21 |
|
unieq |
|- ( x = ( _om \ { (/) } ) -> U. x = U. ( _om \ { (/) } ) ) |
| 22 |
21
|
psseq2d |
|- ( x = ( _om \ { (/) } ) -> ( ( _om \ { (/) } ) C. U. x <-> ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) ) ) |
| 23 |
20 22
|
bitrd |
|- ( x = ( _om \ { (/) } ) -> ( x C. U. x <-> ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) ) ) |
| 24 |
23
|
spcegv |
|- ( ( _om \ { (/) } ) e. _V -> ( ( _om \ { (/) } ) C. U. ( _om \ { (/) } ) -> E. x x C. U. x ) ) |
| 25 |
1 19 24
|
mpisyl |
|- ( _om e. _V -> E. x x C. U. x ) |