| Step | Hyp | Ref | Expression | 
						
							| 1 |  | solin |  |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C \/ B = C \/ C R B ) ) | 
						
							| 2 | 1 | 3adantr3 |  |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( B R C \/ B = C \/ C R B ) ) | 
						
							| 3 |  | iftrue |  |-  ( B R C -> if ( B R C , B , C ) = B ) | 
						
							| 4 | 3 | adantr |  |-  ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) = B ) | 
						
							| 5 |  | sotric |  |-  ( ( R Or A /\ ( B e. A /\ C e. A ) ) -> ( B R C <-> -. ( B = C \/ C R B ) ) ) | 
						
							| 6 | 5 | 3adantr3 |  |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( B R C <-> -. ( B = C \/ C R B ) ) ) | 
						
							| 7 | 6 | biimpac |  |-  ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> -. ( B = C \/ C R B ) ) | 
						
							| 8 |  | ioran |  |-  ( -. ( B = C \/ C R B ) <-> ( -. B = C /\ -. C R B ) ) | 
						
							| 9 |  | simprl |  |-  ( ( -. C R B /\ ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) ) -> B R C ) | 
						
							| 10 |  | iffalse |  |-  ( -. C R B -> if ( C R B , B , C ) = C ) | 
						
							| 11 | 10 | adantr |  |-  ( ( -. C R B /\ ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) ) -> if ( C R B , B , C ) = C ) | 
						
							| 12 | 9 11 | breqtrrd |  |-  ( ( -. C R B /\ ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) ) -> B R if ( C R B , B , C ) ) | 
						
							| 13 | 12 | ex |  |-  ( -. C R B -> ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> B R if ( C R B , B , C ) ) ) | 
						
							| 14 | 8 13 | simplbiim |  |-  ( -. ( B = C \/ C R B ) -> ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> B R if ( C R B , B , C ) ) ) | 
						
							| 15 | 7 14 | mpcom |  |-  ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> B R if ( C R B , B , C ) ) | 
						
							| 16 | 4 15 | eqbrtrd |  |-  ( ( B R C /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) | 
						
							| 17 | 16 | ex |  |-  ( B R C -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 18 |  | eqneqall |  |-  ( B = C -> ( B =/= C -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 19 | 18 | 2a1d |  |-  ( B = C -> ( B e. A -> ( C e. A -> ( B =/= C -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) ) ) | 
						
							| 20 | 19 | 3impd |  |-  ( B = C -> ( ( B e. A /\ C e. A /\ B =/= C ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 21 | 20 | adantld |  |-  ( B = C -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 22 |  | pm3.22 |  |-  ( ( B e. A /\ C e. A ) -> ( C e. A /\ B e. A ) ) | 
						
							| 23 | 22 | 3adant3 |  |-  ( ( B e. A /\ C e. A /\ B =/= C ) -> ( C e. A /\ B e. A ) ) | 
						
							| 24 |  | sotric |  |-  ( ( R Or A /\ ( C e. A /\ B e. A ) ) -> ( C R B <-> -. ( C = B \/ B R C ) ) ) | 
						
							| 25 | 24 | biimpd |  |-  ( ( R Or A /\ ( C e. A /\ B e. A ) ) -> ( C R B -> -. ( C = B \/ B R C ) ) ) | 
						
							| 26 | 23 25 | sylan2 |  |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( C R B -> -. ( C = B \/ B R C ) ) ) | 
						
							| 27 | 26 | impcom |  |-  ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> -. ( C = B \/ B R C ) ) | 
						
							| 28 |  | ioran |  |-  ( -. ( C = B \/ B R C ) <-> ( -. C = B /\ -. B R C ) ) | 
						
							| 29 |  | simpr |  |-  ( ( -. B R C /\ C R B ) -> C R B ) | 
						
							| 30 |  | iffalse |  |-  ( -. B R C -> if ( B R C , B , C ) = C ) | 
						
							| 31 |  | iftrue |  |-  ( C R B -> if ( C R B , B , C ) = B ) | 
						
							| 32 | 30 31 | breqan12d |  |-  ( ( -. B R C /\ C R B ) -> ( if ( B R C , B , C ) R if ( C R B , B , C ) <-> C R B ) ) | 
						
							| 33 | 29 32 | mpbird |  |-  ( ( -. B R C /\ C R B ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) | 
						
							| 34 | 33 | a1d |  |-  ( ( -. B R C /\ C R B ) -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 35 | 34 | expimpd |  |-  ( -. B R C -> ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 36 | 28 35 | simplbiim |  |-  ( -. ( C = B \/ B R C ) -> ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 37 | 27 36 | mpcom |  |-  ( ( C R B /\ ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) | 
						
							| 38 | 37 | ex |  |-  ( C R B -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 39 | 17 21 38 | 3jaoi |  |-  ( ( B R C \/ B = C \/ C R B ) -> ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 40 | 2 39 | mpcom |  |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> if ( B R C , B , C ) R if ( C R B , B , C ) ) | 
						
							| 41 |  | infpr |  |-  ( ( R Or A /\ B e. A /\ C e. A ) -> inf ( { B , C } , A , R ) = if ( B R C , B , C ) ) | 
						
							| 42 |  | suppr |  |-  ( ( R Or A /\ B e. A /\ C e. A ) -> sup ( { B , C } , A , R ) = if ( C R B , B , C ) ) | 
						
							| 43 | 41 42 | breq12d |  |-  ( ( R Or A /\ B e. A /\ C e. A ) -> ( inf ( { B , C } , A , R ) R sup ( { B , C } , A , R ) <-> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 44 | 43 | 3adant3r3 |  |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> ( inf ( { B , C } , A , R ) R sup ( { B , C } , A , R ) <-> if ( B R C , B , C ) R if ( C R B , B , C ) ) ) | 
						
							| 45 | 40 44 | mpbird |  |-  ( ( R Or A /\ ( B e. A /\ C e. A /\ B =/= C ) ) -> inf ( { B , C } , A , R ) R sup ( { B , C } , A , R ) ) |