| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ip1i.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
ip1i.2 |
|- G = ( +v ` U ) |
| 3 |
|
ip1i.4 |
|- S = ( .sOLD ` U ) |
| 4 |
|
ip1i.7 |
|- P = ( .iOLD ` U ) |
| 5 |
|
ip1i.9 |
|- U e. CPreHilOLD |
| 6 |
|
ipasslem11.a |
|- A e. X |
| 7 |
|
ipasslem11.b |
|- B e. X |
| 8 |
|
cnre |
|- ( C e. CC -> E. x e. RR E. y e. RR C = ( x + ( _i x. y ) ) ) |
| 9 |
|
ax-icn |
|- _i e. CC |
| 10 |
|
recn |
|- ( y e. RR -> y e. CC ) |
| 11 |
|
mulcom |
|- ( ( _i e. CC /\ y e. CC ) -> ( _i x. y ) = ( y x. _i ) ) |
| 12 |
9 10 11
|
sylancr |
|- ( y e. RR -> ( _i x. y ) = ( y x. _i ) ) |
| 13 |
12
|
adantl |
|- ( ( x e. RR /\ y e. RR ) -> ( _i x. y ) = ( y x. _i ) ) |
| 14 |
13
|
oveq2d |
|- ( ( x e. RR /\ y e. RR ) -> ( x + ( _i x. y ) ) = ( x + ( y x. _i ) ) ) |
| 15 |
14
|
eqeq2d |
|- ( ( x e. RR /\ y e. RR ) -> ( C = ( x + ( _i x. y ) ) <-> C = ( x + ( y x. _i ) ) ) ) |
| 16 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 17 |
5
|
phnvi |
|- U e. NrmCVec |
| 18 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ x e. CC /\ A e. X ) -> ( x S A ) e. X ) |
| 19 |
17 6 18
|
mp3an13 |
|- ( x e. CC -> ( x S A ) e. X ) |
| 20 |
16 19
|
syl |
|- ( x e. RR -> ( x S A ) e. X ) |
| 21 |
|
mulcl |
|- ( ( y e. CC /\ _i e. CC ) -> ( y x. _i ) e. CC ) |
| 22 |
10 9 21
|
sylancl |
|- ( y e. RR -> ( y x. _i ) e. CC ) |
| 23 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ ( y x. _i ) e. CC /\ A e. X ) -> ( ( y x. _i ) S A ) e. X ) |
| 24 |
17 6 23
|
mp3an13 |
|- ( ( y x. _i ) e. CC -> ( ( y x. _i ) S A ) e. X ) |
| 25 |
22 24
|
syl |
|- ( y e. RR -> ( ( y x. _i ) S A ) e. X ) |
| 26 |
1 2 3 4 5
|
ipdiri |
|- ( ( ( x S A ) e. X /\ ( ( y x. _i ) S A ) e. X /\ B e. X ) -> ( ( ( x S A ) G ( ( y x. _i ) S A ) ) P B ) = ( ( ( x S A ) P B ) + ( ( ( y x. _i ) S A ) P B ) ) ) |
| 27 |
7 26
|
mp3an3 |
|- ( ( ( x S A ) e. X /\ ( ( y x. _i ) S A ) e. X ) -> ( ( ( x S A ) G ( ( y x. _i ) S A ) ) P B ) = ( ( ( x S A ) P B ) + ( ( ( y x. _i ) S A ) P B ) ) ) |
| 28 |
20 25 27
|
syl2an |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( x S A ) G ( ( y x. _i ) S A ) ) P B ) = ( ( ( x S A ) P B ) + ( ( ( y x. _i ) S A ) P B ) ) ) |
| 29 |
1 2 3 4 5 6 7
|
ipasslem9 |
|- ( x e. RR -> ( ( x S A ) P B ) = ( x x. ( A P B ) ) ) |
| 30 |
1 3
|
nvscl |
|- ( ( U e. NrmCVec /\ _i e. CC /\ A e. X ) -> ( _i S A ) e. X ) |
| 31 |
17 9 6 30
|
mp3an |
|- ( _i S A ) e. X |
| 32 |
1 2 3 4 5 31 7
|
ipasslem9 |
|- ( y e. RR -> ( ( y S ( _i S A ) ) P B ) = ( y x. ( ( _i S A ) P B ) ) ) |
| 33 |
1 3
|
nvsass |
|- ( ( U e. NrmCVec /\ ( y e. CC /\ _i e. CC /\ A e. X ) ) -> ( ( y x. _i ) S A ) = ( y S ( _i S A ) ) ) |
| 34 |
17 33
|
mpan |
|- ( ( y e. CC /\ _i e. CC /\ A e. X ) -> ( ( y x. _i ) S A ) = ( y S ( _i S A ) ) ) |
| 35 |
9 6 34
|
mp3an23 |
|- ( y e. CC -> ( ( y x. _i ) S A ) = ( y S ( _i S A ) ) ) |
| 36 |
10 35
|
syl |
|- ( y e. RR -> ( ( y x. _i ) S A ) = ( y S ( _i S A ) ) ) |
| 37 |
36
|
oveq1d |
|- ( y e. RR -> ( ( ( y x. _i ) S A ) P B ) = ( ( y S ( _i S A ) ) P B ) ) |
| 38 |
1 4
|
dipcl |
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 39 |
17 6 7 38
|
mp3an |
|- ( A P B ) e. CC |
| 40 |
|
mulass |
|- ( ( y e. CC /\ _i e. CC /\ ( A P B ) e. CC ) -> ( ( y x. _i ) x. ( A P B ) ) = ( y x. ( _i x. ( A P B ) ) ) ) |
| 41 |
9 39 40
|
mp3an23 |
|- ( y e. CC -> ( ( y x. _i ) x. ( A P B ) ) = ( y x. ( _i x. ( A P B ) ) ) ) |
| 42 |
10 41
|
syl |
|- ( y e. RR -> ( ( y x. _i ) x. ( A P B ) ) = ( y x. ( _i x. ( A P B ) ) ) ) |
| 43 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
| 44 |
1 2 3 4 5 6 7 43
|
ipasslem10 |
|- ( ( _i S A ) P B ) = ( _i x. ( A P B ) ) |
| 45 |
44
|
oveq2i |
|- ( y x. ( ( _i S A ) P B ) ) = ( y x. ( _i x. ( A P B ) ) ) |
| 46 |
42 45
|
eqtr4di |
|- ( y e. RR -> ( ( y x. _i ) x. ( A P B ) ) = ( y x. ( ( _i S A ) P B ) ) ) |
| 47 |
32 37 46
|
3eqtr4d |
|- ( y e. RR -> ( ( ( y x. _i ) S A ) P B ) = ( ( y x. _i ) x. ( A P B ) ) ) |
| 48 |
29 47
|
oveqan12d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( x S A ) P B ) + ( ( ( y x. _i ) S A ) P B ) ) = ( ( x x. ( A P B ) ) + ( ( y x. _i ) x. ( A P B ) ) ) ) |
| 49 |
28 48
|
eqtrd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( x S A ) G ( ( y x. _i ) S A ) ) P B ) = ( ( x x. ( A P B ) ) + ( ( y x. _i ) x. ( A P B ) ) ) ) |
| 50 |
1 2 3
|
nvdir |
|- ( ( U e. NrmCVec /\ ( x e. CC /\ ( y x. _i ) e. CC /\ A e. X ) ) -> ( ( x + ( y x. _i ) ) S A ) = ( ( x S A ) G ( ( y x. _i ) S A ) ) ) |
| 51 |
17 50
|
mpan |
|- ( ( x e. CC /\ ( y x. _i ) e. CC /\ A e. X ) -> ( ( x + ( y x. _i ) ) S A ) = ( ( x S A ) G ( ( y x. _i ) S A ) ) ) |
| 52 |
6 51
|
mp3an3 |
|- ( ( x e. CC /\ ( y x. _i ) e. CC ) -> ( ( x + ( y x. _i ) ) S A ) = ( ( x S A ) G ( ( y x. _i ) S A ) ) ) |
| 53 |
16 22 52
|
syl2an |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( y x. _i ) ) S A ) = ( ( x S A ) G ( ( y x. _i ) S A ) ) ) |
| 54 |
53
|
oveq1d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( x + ( y x. _i ) ) S A ) P B ) = ( ( ( x S A ) G ( ( y x. _i ) S A ) ) P B ) ) |
| 55 |
|
adddir |
|- ( ( x e. CC /\ ( y x. _i ) e. CC /\ ( A P B ) e. CC ) -> ( ( x + ( y x. _i ) ) x. ( A P B ) ) = ( ( x x. ( A P B ) ) + ( ( y x. _i ) x. ( A P B ) ) ) ) |
| 56 |
39 55
|
mp3an3 |
|- ( ( x e. CC /\ ( y x. _i ) e. CC ) -> ( ( x + ( y x. _i ) ) x. ( A P B ) ) = ( ( x x. ( A P B ) ) + ( ( y x. _i ) x. ( A P B ) ) ) ) |
| 57 |
16 22 56
|
syl2an |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( y x. _i ) ) x. ( A P B ) ) = ( ( x x. ( A P B ) ) + ( ( y x. _i ) x. ( A P B ) ) ) ) |
| 58 |
49 54 57
|
3eqtr4d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( x + ( y x. _i ) ) S A ) P B ) = ( ( x + ( y x. _i ) ) x. ( A P B ) ) ) |
| 59 |
|
oveq1 |
|- ( C = ( x + ( y x. _i ) ) -> ( C S A ) = ( ( x + ( y x. _i ) ) S A ) ) |
| 60 |
59
|
oveq1d |
|- ( C = ( x + ( y x. _i ) ) -> ( ( C S A ) P B ) = ( ( ( x + ( y x. _i ) ) S A ) P B ) ) |
| 61 |
|
oveq1 |
|- ( C = ( x + ( y x. _i ) ) -> ( C x. ( A P B ) ) = ( ( x + ( y x. _i ) ) x. ( A P B ) ) ) |
| 62 |
60 61
|
eqeq12d |
|- ( C = ( x + ( y x. _i ) ) -> ( ( ( C S A ) P B ) = ( C x. ( A P B ) ) <-> ( ( ( x + ( y x. _i ) ) S A ) P B ) = ( ( x + ( y x. _i ) ) x. ( A P B ) ) ) ) |
| 63 |
58 62
|
syl5ibrcom |
|- ( ( x e. RR /\ y e. RR ) -> ( C = ( x + ( y x. _i ) ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
| 64 |
15 63
|
sylbid |
|- ( ( x e. RR /\ y e. RR ) -> ( C = ( x + ( _i x. y ) ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) ) |
| 65 |
64
|
rexlimivv |
|- ( E. x e. RR E. y e. RR C = ( x + ( _i x. y ) ) -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |
| 66 |
8 65
|
syl |
|- ( C e. CC -> ( ( C S A ) P B ) = ( C x. ( A P B ) ) ) |