Step |
Hyp |
Ref |
Expression |
1 |
|
isnacs.f |
|- F = ( mrCls ` C ) |
2 |
1
|
isnacs |
|- ( C e. ( NoeACS ` X ) <-> ( C e. ( ACS ` X ) /\ A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) ) ) |
3 |
|
eqcom |
|- ( s = ( F ` g ) <-> ( F ` g ) = s ) |
4 |
3
|
rexbii |
|- ( E. g e. ( ~P X i^i Fin ) s = ( F ` g ) <-> E. g e. ( ~P X i^i Fin ) ( F ` g ) = s ) |
5 |
|
acsmre |
|- ( C e. ( ACS ` X ) -> C e. ( Moore ` X ) ) |
6 |
1
|
mrcf |
|- ( C e. ( Moore ` X ) -> F : ~P X --> C ) |
7 |
|
ffn |
|- ( F : ~P X --> C -> F Fn ~P X ) |
8 |
5 6 7
|
3syl |
|- ( C e. ( ACS ` X ) -> F Fn ~P X ) |
9 |
|
inss1 |
|- ( ~P X i^i Fin ) C_ ~P X |
10 |
|
fvelimab |
|- ( ( F Fn ~P X /\ ( ~P X i^i Fin ) C_ ~P X ) -> ( s e. ( F " ( ~P X i^i Fin ) ) <-> E. g e. ( ~P X i^i Fin ) ( F ` g ) = s ) ) |
11 |
8 9 10
|
sylancl |
|- ( C e. ( ACS ` X ) -> ( s e. ( F " ( ~P X i^i Fin ) ) <-> E. g e. ( ~P X i^i Fin ) ( F ` g ) = s ) ) |
12 |
4 11
|
bitr4id |
|- ( C e. ( ACS ` X ) -> ( E. g e. ( ~P X i^i Fin ) s = ( F ` g ) <-> s e. ( F " ( ~P X i^i Fin ) ) ) ) |
13 |
12
|
ralbidv |
|- ( C e. ( ACS ` X ) -> ( A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) <-> A. s e. C s e. ( F " ( ~P X i^i Fin ) ) ) ) |
14 |
|
dfss3 |
|- ( C C_ ( F " ( ~P X i^i Fin ) ) <-> A. s e. C s e. ( F " ( ~P X i^i Fin ) ) ) |
15 |
13 14
|
bitr4di |
|- ( C e. ( ACS ` X ) -> ( A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) <-> C C_ ( F " ( ~P X i^i Fin ) ) ) ) |
16 |
|
imassrn |
|- ( F " ( ~P X i^i Fin ) ) C_ ran F |
17 |
|
frn |
|- ( F : ~P X --> C -> ran F C_ C ) |
18 |
5 6 17
|
3syl |
|- ( C e. ( ACS ` X ) -> ran F C_ C ) |
19 |
16 18
|
sstrid |
|- ( C e. ( ACS ` X ) -> ( F " ( ~P X i^i Fin ) ) C_ C ) |
20 |
19
|
biantrurd |
|- ( C e. ( ACS ` X ) -> ( C C_ ( F " ( ~P X i^i Fin ) ) <-> ( ( F " ( ~P X i^i Fin ) ) C_ C /\ C C_ ( F " ( ~P X i^i Fin ) ) ) ) ) |
21 |
|
eqss |
|- ( ( F " ( ~P X i^i Fin ) ) = C <-> ( ( F " ( ~P X i^i Fin ) ) C_ C /\ C C_ ( F " ( ~P X i^i Fin ) ) ) ) |
22 |
20 21
|
bitr4di |
|- ( C e. ( ACS ` X ) -> ( C C_ ( F " ( ~P X i^i Fin ) ) <-> ( F " ( ~P X i^i Fin ) ) = C ) ) |
23 |
15 22
|
bitrd |
|- ( C e. ( ACS ` X ) -> ( A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) <-> ( F " ( ~P X i^i Fin ) ) = C ) ) |
24 |
23
|
pm5.32i |
|- ( ( C e. ( ACS ` X ) /\ A. s e. C E. g e. ( ~P X i^i Fin ) s = ( F ` g ) ) <-> ( C e. ( ACS ` X ) /\ ( F " ( ~P X i^i Fin ) ) = C ) ) |
25 |
2 24
|
bitri |
|- ( C e. ( NoeACS ` X ) <-> ( C e. ( ACS ` X ) /\ ( F " ( ~P X i^i Fin ) ) = C ) ) |