Step |
Hyp |
Ref |
Expression |
1 |
|
0ss |
|- (/) C_ ( Vtx ` G ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
4 |
2 3
|
isisubgr |
|- ( ( G e. UHGraph /\ (/) C_ ( Vtx ` G ) ) -> ( G ISubGr (/) ) = <. (/) , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) >. ) |
5 |
1 4
|
mpan2 |
|- ( G e. UHGraph -> ( G ISubGr (/) ) = <. (/) , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) >. ) |
6 |
|
inrab2 |
|- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } i^i dom ( iEdg ` G ) ) = { x e. ( dom ( iEdg ` G ) i^i dom ( iEdg ` G ) ) | ( ( iEdg ` G ) ` x ) C_ (/) } |
7 |
|
inidm |
|- ( dom ( iEdg ` G ) i^i dom ( iEdg ` G ) ) = dom ( iEdg ` G ) |
8 |
7
|
rabeqi |
|- { x e. ( dom ( iEdg ` G ) i^i dom ( iEdg ` G ) ) | ( ( iEdg ` G ) ` x ) C_ (/) } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } |
9 |
|
ss0b |
|- ( ( ( iEdg ` G ) ` x ) C_ (/) <-> ( ( iEdg ` G ) ` x ) = (/) ) |
10 |
8 9
|
rabbieq |
|- { x e. ( dom ( iEdg ` G ) i^i dom ( iEdg ` G ) ) | ( ( iEdg ` G ) ` x ) C_ (/) } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = (/) } |
11 |
6 10
|
eqtri |
|- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } i^i dom ( iEdg ` G ) ) = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = (/) } |
12 |
11
|
ineqcomi |
|- ( dom ( iEdg ` G ) i^i { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = (/) } |
13 |
2 3
|
uhgrf |
|- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
14 |
|
ffvelcdm |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) /\ x e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` x ) e. ( ~P ( Vtx ` G ) \ { (/) } ) ) |
15 |
|
eldifsni |
|- ( ( ( iEdg ` G ) ` x ) e. ( ~P ( Vtx ` G ) \ { (/) } ) -> ( ( iEdg ` G ) ` x ) =/= (/) ) |
16 |
14 15
|
syl |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) /\ x e. dom ( iEdg ` G ) ) -> ( ( iEdg ` G ) ` x ) =/= (/) ) |
17 |
16
|
neneqd |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) /\ x e. dom ( iEdg ` G ) ) -> -. ( ( iEdg ` G ) ` x ) = (/) ) |
18 |
13 17
|
sylan |
|- ( ( G e. UHGraph /\ x e. dom ( iEdg ` G ) ) -> -. ( ( iEdg ` G ) ` x ) = (/) ) |
19 |
18
|
ralrimiva |
|- ( G e. UHGraph -> A. x e. dom ( iEdg ` G ) -. ( ( iEdg ` G ) ` x ) = (/) ) |
20 |
|
rabeq0 |
|- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = (/) } = (/) <-> A. x e. dom ( iEdg ` G ) -. ( ( iEdg ` G ) ` x ) = (/) ) |
21 |
19 20
|
sylibr |
|- ( G e. UHGraph -> { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = (/) } = (/) ) |
22 |
12 21
|
eqtrid |
|- ( G e. UHGraph -> ( dom ( iEdg ` G ) i^i { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) ) |
23 |
3
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
24 |
23
|
funfnd |
|- ( G e. UHGraph -> ( iEdg ` G ) Fn dom ( iEdg ` G ) ) |
25 |
|
fnresdisj |
|- ( ( iEdg ` G ) Fn dom ( iEdg ` G ) -> ( ( dom ( iEdg ` G ) i^i { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) <-> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) ) ) |
26 |
24 25
|
syl |
|- ( G e. UHGraph -> ( ( dom ( iEdg ` G ) i^i { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) <-> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) ) ) |
27 |
22 26
|
mpbid |
|- ( G e. UHGraph -> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) = (/) ) |
28 |
27
|
opeq2d |
|- ( G e. UHGraph -> <. (/) , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ (/) } ) >. = <. (/) , (/) >. ) |
29 |
5 28
|
eqtrd |
|- ( G e. UHGraph -> ( G ISubGr (/) ) = <. (/) , (/) >. ) |