Step |
Hyp |
Ref |
Expression |
1 |
|
0ss |
⊢ ∅ ⊆ ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
4 |
2 3
|
isisubgr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ∅ ⊆ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ISubGr ∅ ) = 〈 ∅ , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) 〉 ) |
5 |
1 4
|
mpan2 |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr ∅ ) = 〈 ∅ , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) 〉 ) |
6 |
|
inrab2 |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ∩ dom ( iEdg ‘ 𝐺 ) ) = { 𝑥 ∈ ( dom ( iEdg ‘ 𝐺 ) ∩ dom ( iEdg ‘ 𝐺 ) ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } |
7 |
|
inidm |
⊢ ( dom ( iEdg ‘ 𝐺 ) ∩ dom ( iEdg ‘ 𝐺 ) ) = dom ( iEdg ‘ 𝐺 ) |
8 |
7
|
rabeqi |
⊢ { 𝑥 ∈ ( dom ( iEdg ‘ 𝐺 ) ∩ dom ( iEdg ‘ 𝐺 ) ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } |
9 |
|
ss0b |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ ) |
10 |
8 9
|
rabbieq |
⊢ { 𝑥 ∈ ( dom ( iEdg ‘ 𝐺 ) ∩ dom ( iEdg ‘ 𝐺 ) ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ } |
11 |
6 10
|
eqtri |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ∩ dom ( iEdg ‘ 𝐺 ) ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ } |
12 |
11
|
ineqcomi |
⊢ ( dom ( iEdg ‘ 𝐺 ) ∩ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ } |
13 |
2 3
|
uhgrf |
⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
14 |
|
ffvelcdm |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
15 |
|
eldifsni |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ≠ ∅ ) |
16 |
14 15
|
syl |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ≠ ∅ ) |
17 |
16
|
neneqd |
⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ¬ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ ) |
18 |
13 17
|
sylan |
⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ¬ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ ) |
19 |
18
|
ralrimiva |
⊢ ( 𝐺 ∈ UHGraph → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ ) |
20 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ } = ∅ ↔ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ¬ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ ) |
21 |
19 20
|
sylibr |
⊢ ( 𝐺 ∈ UHGraph → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ∅ } = ∅ ) |
22 |
12 21
|
eqtrid |
⊢ ( 𝐺 ∈ UHGraph → ( dom ( iEdg ‘ 𝐺 ) ∩ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ) |
23 |
3
|
uhgrfun |
⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
24 |
23
|
funfnd |
⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
25 |
|
fnresdisj |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( ( dom ( iEdg ‘ 𝐺 ) ∩ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ↔ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ) ) |
26 |
24 25
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( ( dom ( iEdg ‘ 𝐺 ) ∩ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ↔ ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ) ) |
27 |
22 26
|
mpbid |
⊢ ( 𝐺 ∈ UHGraph → ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) = ∅ ) |
28 |
27
|
opeq2d |
⊢ ( 𝐺 ∈ UHGraph → 〈 ∅ , ( ( iEdg ‘ 𝐺 ) ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ ∅ } ) 〉 = 〈 ∅ , ∅ 〉 ) |
29 |
5 28
|
eqtrd |
⊢ ( 𝐺 ∈ UHGraph → ( 𝐺 ISubGr ∅ ) = 〈 ∅ , ∅ 〉 ) |