Metamath Proof Explorer


Theorem isubgr0uhgr

Description: The subgraph induced by an empty set of vertices of a hypergraph. (Contributed by AV, 13-May-2025)

Ref Expression
Assertion isubgr0uhgr G UHGraph G ISubGr =

Proof

Step Hyp Ref Expression
1 0ss Vtx G
2 eqid Vtx G = Vtx G
3 eqid iEdg G = iEdg G
4 2 3 isisubgr G UHGraph Vtx G G ISubGr = iEdg G x dom iEdg G | iEdg G x
5 1 4 mpan2 G UHGraph G ISubGr = iEdg G x dom iEdg G | iEdg G x
6 inrab2 x dom iEdg G | iEdg G x dom iEdg G = x dom iEdg G dom iEdg G | iEdg G x
7 inidm dom iEdg G dom iEdg G = dom iEdg G
8 7 rabeqi x dom iEdg G dom iEdg G | iEdg G x = x dom iEdg G | iEdg G x
9 ss0b iEdg G x iEdg G x =
10 8 9 rabbieq x dom iEdg G dom iEdg G | iEdg G x = x dom iEdg G | iEdg G x =
11 6 10 eqtri x dom iEdg G | iEdg G x dom iEdg G = x dom iEdg G | iEdg G x =
12 11 ineqcomi dom iEdg G x dom iEdg G | iEdg G x = x dom iEdg G | iEdg G x =
13 2 3 uhgrf G UHGraph iEdg G : dom iEdg G 𝒫 Vtx G
14 ffvelcdm iEdg G : dom iEdg G 𝒫 Vtx G x dom iEdg G iEdg G x 𝒫 Vtx G
15 eldifsni iEdg G x 𝒫 Vtx G iEdg G x
16 14 15 syl iEdg G : dom iEdg G 𝒫 Vtx G x dom iEdg G iEdg G x
17 16 neneqd iEdg G : dom iEdg G 𝒫 Vtx G x dom iEdg G ¬ iEdg G x =
18 13 17 sylan G UHGraph x dom iEdg G ¬ iEdg G x =
19 18 ralrimiva G UHGraph x dom iEdg G ¬ iEdg G x =
20 rabeq0 x dom iEdg G | iEdg G x = = x dom iEdg G ¬ iEdg G x =
21 19 20 sylibr G UHGraph x dom iEdg G | iEdg G x = =
22 12 21 eqtrid G UHGraph dom iEdg G x dom iEdg G | iEdg G x =
23 3 uhgrfun G UHGraph Fun iEdg G
24 23 funfnd G UHGraph iEdg G Fn dom iEdg G
25 fnresdisj iEdg G Fn dom iEdg G dom iEdg G x dom iEdg G | iEdg G x = iEdg G x dom iEdg G | iEdg G x =
26 24 25 syl G UHGraph dom iEdg G x dom iEdg G | iEdg G x = iEdg G x dom iEdg G | iEdg G x =
27 22 26 mpbid G UHGraph iEdg G x dom iEdg G | iEdg G x =
28 27 opeq2d G UHGraph iEdg G x dom iEdg G | iEdg G x =
29 5 28 eqtrd G UHGraph G ISubGr =