| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gt0ne0 |
|- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
| 2 |
|
rereccl |
|- ( ( B e. RR /\ B =/= 0 ) -> ( 1 / B ) e. RR ) |
| 3 |
1 2
|
syldan |
|- ( ( B e. RR /\ 0 < B ) -> ( 1 / B ) e. RR ) |
| 4 |
|
gt0ne0 |
|- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
| 5 |
|
rereccl |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
| 6 |
4 5
|
syldan |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 7 |
3 6
|
anim12i |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( A e. RR /\ 0 < A ) ) -> ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR ) ) |
| 8 |
7
|
ancoms |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR ) ) |
| 9 |
8
|
3adant3 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR ) ) |
| 10 |
|
simp3 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( C e. RR /\ 0 <_ C ) ) |
| 11 |
|
df-3an |
|- ( ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR /\ ( C e. RR /\ 0 <_ C ) ) <-> ( ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR ) /\ ( C e. RR /\ 0 <_ C ) ) ) |
| 12 |
9 10 11
|
sylanbrc |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR /\ ( C e. RR /\ 0 <_ C ) ) ) |
| 13 |
|
lemul2a |
|- ( ( ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ ( 1 / B ) <_ ( 1 / A ) ) -> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) |
| 14 |
13
|
ex |
|- ( ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( ( 1 / B ) <_ ( 1 / A ) -> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 15 |
12 14
|
syl |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( ( 1 / B ) <_ ( 1 / A ) -> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 16 |
|
lerec |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |
| 17 |
16
|
3adant3 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |
| 18 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 19 |
18
|
adantr |
|- ( ( C e. RR /\ 0 <_ C ) -> C e. CC ) |
| 20 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 21 |
20
|
adantr |
|- ( ( B e. RR /\ 0 < B ) -> B e. CC ) |
| 22 |
21 1
|
jca |
|- ( ( B e. RR /\ 0 < B ) -> ( B e. CC /\ B =/= 0 ) ) |
| 23 |
19 22
|
anim12i |
|- ( ( ( C e. RR /\ 0 <_ C ) /\ ( B e. RR /\ 0 < B ) ) -> ( C e. CC /\ ( B e. CC /\ B =/= 0 ) ) ) |
| 24 |
|
3anass |
|- ( ( C e. CC /\ B e. CC /\ B =/= 0 ) <-> ( C e. CC /\ ( B e. CC /\ B =/= 0 ) ) ) |
| 25 |
23 24
|
sylibr |
|- ( ( ( C e. RR /\ 0 <_ C ) /\ ( B e. RR /\ 0 < B ) ) -> ( C e. CC /\ B e. CC /\ B =/= 0 ) ) |
| 26 |
|
divrec |
|- ( ( C e. CC /\ B e. CC /\ B =/= 0 ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 27 |
25 26
|
syl |
|- ( ( ( C e. RR /\ 0 <_ C ) /\ ( B e. RR /\ 0 < B ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 28 |
27
|
ancoms |
|- ( ( ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 29 |
28
|
3adant1 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 30 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 31 |
30
|
adantr |
|- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
| 32 |
31 4
|
jca |
|- ( ( A e. RR /\ 0 < A ) -> ( A e. CC /\ A =/= 0 ) ) |
| 33 |
19 32
|
anim12i |
|- ( ( ( C e. RR /\ 0 <_ C ) /\ ( A e. RR /\ 0 < A ) ) -> ( C e. CC /\ ( A e. CC /\ A =/= 0 ) ) ) |
| 34 |
|
3anass |
|- ( ( C e. CC /\ A e. CC /\ A =/= 0 ) <-> ( C e. CC /\ ( A e. CC /\ A =/= 0 ) ) ) |
| 35 |
33 34
|
sylibr |
|- ( ( ( C e. RR /\ 0 <_ C ) /\ ( A e. RR /\ 0 < A ) ) -> ( C e. CC /\ A e. CC /\ A =/= 0 ) ) |
| 36 |
|
divrec |
|- ( ( C e. CC /\ A e. CC /\ A =/= 0 ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 37 |
35 36
|
syl |
|- ( ( ( C e. RR /\ 0 <_ C ) /\ ( A e. RR /\ 0 < A ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 38 |
37
|
ancoms |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 39 |
38
|
3adant2 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 40 |
29 39
|
breq12d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( ( C / B ) <_ ( C / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 41 |
15 17 40
|
3imtr4d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) -> ( A <_ B -> ( C / B ) <_ ( C / A ) ) ) |