Metamath Proof Explorer


Theorem lediv2aALT

Description: Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion lediv2aALT A 0 < A B 0 < B C 0 C A B C B C A

Proof

Step Hyp Ref Expression
1 gt0ne0 B 0 < B B 0
2 rereccl B B 0 1 B
3 1 2 syldan B 0 < B 1 B
4 gt0ne0 A 0 < A A 0
5 rereccl A A 0 1 A
6 4 5 syldan A 0 < A 1 A
7 3 6 anim12i B 0 < B A 0 < A 1 B 1 A
8 7 ancoms A 0 < A B 0 < B 1 B 1 A
9 8 3adant3 A 0 < A B 0 < B C 0 C 1 B 1 A
10 simp3 A 0 < A B 0 < B C 0 C C 0 C
11 df-3an 1 B 1 A C 0 C 1 B 1 A C 0 C
12 9 10 11 sylanbrc A 0 < A B 0 < B C 0 C 1 B 1 A C 0 C
13 lemul2a 1 B 1 A C 0 C 1 B 1 A C 1 B C 1 A
14 13 ex 1 B 1 A C 0 C 1 B 1 A C 1 B C 1 A
15 12 14 syl A 0 < A B 0 < B C 0 C 1 B 1 A C 1 B C 1 A
16 lerec A 0 < A B 0 < B A B 1 B 1 A
17 16 3adant3 A 0 < A B 0 < B C 0 C A B 1 B 1 A
18 recn C C
19 18 adantr C 0 C C
20 recn B B
21 20 adantr B 0 < B B
22 21 1 jca B 0 < B B B 0
23 19 22 anim12i C 0 C B 0 < B C B B 0
24 3anass C B B 0 C B B 0
25 23 24 sylibr C 0 C B 0 < B C B B 0
26 divrec C B B 0 C B = C 1 B
27 25 26 syl C 0 C B 0 < B C B = C 1 B
28 27 ancoms B 0 < B C 0 C C B = C 1 B
29 28 3adant1 A 0 < A B 0 < B C 0 C C B = C 1 B
30 recn A A
31 30 adantr A 0 < A A
32 31 4 jca A 0 < A A A 0
33 19 32 anim12i C 0 C A 0 < A C A A 0
34 3anass C A A 0 C A A 0
35 33 34 sylibr C 0 C A 0 < A C A A 0
36 divrec C A A 0 C A = C 1 A
37 35 36 syl C 0 C A 0 < A C A = C 1 A
38 37 ancoms A 0 < A C 0 C C A = C 1 A
39 38 3adant2 A 0 < A B 0 < B C 0 C C A = C 1 A
40 29 39 breq12d A 0 < A B 0 < B C 0 C C B C A C 1 B C 1 A
41 15 17 40 3imtr4d A 0 < A B 0 < B C 0 C A B C B C A