| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsval4.1 |  |-  F = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 2 |  | simpl |  |-  ( ( A e. ZZ /\ N e. NN ) -> A e. ZZ ) | 
						
							| 3 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 4 | 3 | adantl |  |-  ( ( A e. ZZ /\ N e. NN ) -> N e. ZZ ) | 
						
							| 5 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 6 | 5 | adantl |  |-  ( ( A e. ZZ /\ N e. NN ) -> N =/= 0 ) | 
						
							| 7 | 1 | lgsval4 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) | 
						
							| 8 | 2 4 6 7 | syl3anc |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) | 
						
							| 9 |  | nngt0 |  |-  ( N e. NN -> 0 < N ) | 
						
							| 10 | 9 | adantl |  |-  ( ( A e. ZZ /\ N e. NN ) -> 0 < N ) | 
						
							| 11 |  | 0re |  |-  0 e. RR | 
						
							| 12 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 13 | 12 | adantl |  |-  ( ( A e. ZZ /\ N e. NN ) -> N e. RR ) | 
						
							| 14 |  | ltnsym |  |-  ( ( 0 e. RR /\ N e. RR ) -> ( 0 < N -> -. N < 0 ) ) | 
						
							| 15 | 11 13 14 | sylancr |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( 0 < N -> -. N < 0 ) ) | 
						
							| 16 | 10 15 | mpd |  |-  ( ( A e. ZZ /\ N e. NN ) -> -. N < 0 ) | 
						
							| 17 | 16 | intnanrd |  |-  ( ( A e. ZZ /\ N e. NN ) -> -. ( N < 0 /\ A < 0 ) ) | 
						
							| 18 | 17 | iffalsed |  |-  ( ( A e. ZZ /\ N e. NN ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = 1 ) | 
						
							| 19 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 20 | 19 | adantl |  |-  ( ( A e. ZZ /\ N e. NN ) -> N e. NN0 ) | 
						
							| 21 | 20 | nn0ge0d |  |-  ( ( A e. ZZ /\ N e. NN ) -> 0 <_ N ) | 
						
							| 22 | 13 21 | absidd |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( abs ` N ) = N ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( seq 1 ( x. , F ) ` ( abs ` N ) ) = ( seq 1 ( x. , F ) ` N ) ) | 
						
							| 24 | 18 23 | oveq12d |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) = ( 1 x. ( seq 1 ( x. , F ) ` N ) ) ) | 
						
							| 25 |  | simpr |  |-  ( ( A e. ZZ /\ N e. NN ) -> N e. NN ) | 
						
							| 26 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 27 | 25 26 | eleqtrdi |  |-  ( ( A e. ZZ /\ N e. NN ) -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 28 | 1 | lgsfcl3 |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F : NN --> ZZ ) | 
						
							| 29 | 2 4 6 28 | syl3anc |  |-  ( ( A e. ZZ /\ N e. NN ) -> F : NN --> ZZ ) | 
						
							| 30 |  | elfznn |  |-  ( x e. ( 1 ... N ) -> x e. NN ) | 
						
							| 31 |  | ffvelcdm |  |-  ( ( F : NN --> ZZ /\ x e. NN ) -> ( F ` x ) e. ZZ ) | 
						
							| 32 | 29 30 31 | syl2an |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ x e. ( 1 ... N ) ) -> ( F ` x ) e. ZZ ) | 
						
							| 33 |  | zmulcl |  |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( A e. ZZ /\ N e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) | 
						
							| 35 | 27 32 34 | seqcl |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( seq 1 ( x. , F ) ` N ) e. ZZ ) | 
						
							| 36 | 35 | zcnd |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( seq 1 ( x. , F ) ` N ) e. CC ) | 
						
							| 37 | 36 | mullidd |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( 1 x. ( seq 1 ( x. , F ) ` N ) ) = ( seq 1 ( x. , F ) ` N ) ) | 
						
							| 38 | 8 24 37 | 3eqtrd |  |-  ( ( A e. ZZ /\ N e. NN ) -> ( A /L N ) = ( seq 1 ( x. , F ) ` N ) ) |