| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsval4.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( ( 𝐴  /L  𝑛 ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝐴  ∈  ℤ ) | 
						
							| 3 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℤ ) | 
						
							| 5 |  | nnne0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ≠  0 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ≠  0 ) | 
						
							| 7 | 1 | lgsval4 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  ( 𝐴  /L  𝑁 )  =  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) | 
						
							| 8 | 2 4 6 7 | syl3anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  /L  𝑁 )  =  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) | 
						
							| 9 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  0  <  𝑁 ) | 
						
							| 11 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 12 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℝ ) | 
						
							| 14 |  | ltnsym | ⊢ ( ( 0  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 0  <  𝑁  →  ¬  𝑁  <  0 ) ) | 
						
							| 15 | 11 13 14 | sylancr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 0  <  𝑁  →  ¬  𝑁  <  0 ) ) | 
						
							| 16 | 10 15 | mpd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ¬  𝑁  <  0 ) | 
						
							| 17 | 16 | intnanrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ¬  ( 𝑁  <  0  ∧  𝐴  <  0 ) ) | 
						
							| 18 | 17 | iffalsed | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  =  1 ) | 
						
							| 19 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 21 | 20 | nn0ge0d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  0  ≤  𝑁 ) | 
						
							| 22 | 13 21 | absidd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( abs ‘ 𝑁 )  =  𝑁 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑁 ) )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 24 | 18 23 | oveq12d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( if ( ( 𝑁  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ ( abs ‘ 𝑁 ) ) )  =  ( 1  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 26 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 27 | 25 26 | eleqtrdi | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 28 | 1 | lgsfcl3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑁  ≠  0 )  →  𝐹 : ℕ ⟶ ℤ ) | 
						
							| 29 | 2 4 6 28 | syl3anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  𝐹 : ℕ ⟶ ℤ ) | 
						
							| 30 |  | elfznn | ⊢ ( 𝑥  ∈  ( 1 ... 𝑁 )  →  𝑥  ∈  ℕ ) | 
						
							| 31 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ℤ  ∧  𝑥  ∈  ℕ )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 32 | 29 30 31 | syl2an | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 33 |  | zmulcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  ·  𝑦 )  ∈  ℤ ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℤ ) | 
						
							| 35 | 27 32 34 | seqcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 36 | 35 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 37 | 36 | mullidd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 1  ·  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 38 | 8 24 37 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  ( 𝐴  /L  𝑁 )  =  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) |