Metamath Proof Explorer


Theorem osumcllem10N

Description: Lemma for osumclN . Contradict osumcllem9N . (Contributed by NM, 25-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l
|- .<_ = ( le ` K )
osumcllem.j
|- .\/ = ( join ` K )
osumcllem.a
|- A = ( Atoms ` K )
osumcllem.p
|- .+ = ( +P ` K )
osumcllem.o
|- ._|_ = ( _|_P ` K )
osumcllem.c
|- C = ( PSubCl ` K )
osumcllem.m
|- M = ( X .+ { p } )
osumcllem.u
|- U = ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) )
Assertion osumcllem10N
|- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> M =/= X )

Proof

Step Hyp Ref Expression
1 osumcllem.l
 |-  .<_ = ( le ` K )
2 osumcllem.j
 |-  .\/ = ( join ` K )
3 osumcllem.a
 |-  A = ( Atoms ` K )
4 osumcllem.p
 |-  .+ = ( +P ` K )
5 osumcllem.o
 |-  ._|_ = ( _|_P ` K )
6 osumcllem.c
 |-  C = ( PSubCl ` K )
7 osumcllem.m
 |-  M = ( X .+ { p } )
8 osumcllem.u
 |-  U = ( ._|_ ` ( ._|_ ` ( X .+ Y ) ) )
9 simp11
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> K e. HL )
10 simp2
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> p e. A )
11 10 snssd
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> { p } C_ A )
12 simp12
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> X C_ A )
13 3 4 sspadd2
 |-  ( ( K e. HL /\ { p } C_ A /\ X C_ A ) -> { p } C_ ( X .+ { p } ) )
14 9 11 12 13 syl3anc
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> { p } C_ ( X .+ { p } ) )
15 vex
 |-  p e. _V
16 15 snss
 |-  ( p e. ( X .+ { p } ) <-> { p } C_ ( X .+ { p } ) )
17 14 16 sylibr
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> p e. ( X .+ { p } ) )
18 17 7 eleqtrrdi
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> p e. M )
19 3 4 sspadd1
 |-  ( ( K e. HL /\ X C_ A /\ Y C_ A ) -> X C_ ( X .+ Y ) )
20 19 3ad2ant1
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> X C_ ( X .+ Y ) )
21 simp3
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> -. p e. ( X .+ Y ) )
22 20 21 ssneldd
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> -. p e. X )
23 nelne1
 |-  ( ( p e. M /\ -. p e. X ) -> M =/= X )
24 18 22 23 syl2anc
 |-  ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ p e. A /\ -. p e. ( X .+ Y ) ) -> M =/= X )