| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddatcl.a |
|- A = ( Atoms ` K ) |
| 2 |
|
paddatcl.p |
|- .+ = ( +P ` K ) |
| 3 |
|
paddatcl.c |
|- C = ( PSubCl ` K ) |
| 4 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> K e. CLat ) |
| 6 |
1 3
|
psubclssatN |
|- ( ( K e. HL /\ X e. C ) -> X C_ A ) |
| 7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 8 |
7 1
|
atssbase |
|- A C_ ( Base ` K ) |
| 9 |
6 8
|
sstrdi |
|- ( ( K e. HL /\ X e. C ) -> X C_ ( Base ` K ) ) |
| 10 |
9
|
3adant3 |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> X C_ ( Base ` K ) ) |
| 11 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
| 12 |
7 11
|
clatlubcl |
|- ( ( K e. CLat /\ X C_ ( Base ` K ) ) -> ( ( lub ` K ) ` X ) e. ( Base ` K ) ) |
| 13 |
5 10 12
|
syl2anc |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( lub ` K ) ` X ) e. ( Base ` K ) ) |
| 14 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 15 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
| 16 |
7 14 1 15 2
|
pmapjat1 |
|- ( ( K e. HL /\ ( ( lub ` K ) ` X ) e. ( Base ` K ) /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) ) = ( ( ( pmap ` K ) ` ( ( lub ` K ) ` X ) ) .+ ( ( pmap ` K ) ` Q ) ) ) |
| 17 |
13 16
|
syld3an2 |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) ) = ( ( ( pmap ` K ) ` ( ( lub ` K ) ` X ) ) .+ ( ( pmap ` K ) ` Q ) ) ) |
| 18 |
11 15 3
|
pmapidclN |
|- ( ( K e. HL /\ X e. C ) -> ( ( pmap ` K ) ` ( ( lub ` K ) ` X ) ) = X ) |
| 19 |
18
|
3adant3 |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( lub ` K ) ` X ) ) = X ) |
| 20 |
1 15
|
pmapat |
|- ( ( K e. HL /\ Q e. A ) -> ( ( pmap ` K ) ` Q ) = { Q } ) |
| 21 |
20
|
3adant2 |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( pmap ` K ) ` Q ) = { Q } ) |
| 22 |
19 21
|
oveq12d |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( ( pmap ` K ) ` ( ( lub ` K ) ` X ) ) .+ ( ( pmap ` K ) ` Q ) ) = ( X .+ { Q } ) ) |
| 23 |
17 22
|
eqtr2d |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( X .+ { Q } ) = ( ( pmap ` K ) ` ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) ) ) |
| 24 |
|
simp1 |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> K e. HL ) |
| 25 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> K e. Lat ) |
| 27 |
7 1
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 28 |
27
|
3ad2ant3 |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> Q e. ( Base ` K ) ) |
| 29 |
7 14
|
latjcl |
|- ( ( K e. Lat /\ ( ( lub ` K ) ` X ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) e. ( Base ` K ) ) |
| 30 |
26 13 28 29
|
syl3anc |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) e. ( Base ` K ) ) |
| 31 |
7 15 3
|
pmapsubclN |
|- ( ( K e. HL /\ ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) e. ( Base ` K ) ) -> ( ( pmap ` K ) ` ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) ) e. C ) |
| 32 |
24 30 31
|
syl2anc |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( ( pmap ` K ) ` ( ( ( lub ` K ) ` X ) ( join ` K ) Q ) ) e. C ) |
| 33 |
23 32
|
eqeltrd |
|- ( ( K e. HL /\ X e. C /\ Q e. A ) -> ( X .+ { Q } ) e. C ) |