| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmapjat.b |
|- B = ( Base ` K ) |
| 2 |
|
pmapjat.j |
|- .\/ = ( join ` K ) |
| 3 |
|
pmapjat.a |
|- A = ( Atoms ` K ) |
| 4 |
|
pmapjat.m |
|- M = ( pmap ` K ) |
| 5 |
|
pmapjat.p |
|- .+ = ( +P ` K ) |
| 6 |
|
simpl |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> K e. HL ) |
| 7 |
1 3 4
|
pmapssat |
|- ( ( K e. HL /\ X e. B ) -> ( M ` X ) C_ A ) |
| 8 |
7
|
3ad2antr1 |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` X ) C_ A ) |
| 9 |
|
simpr2 |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> Q e. A ) |
| 10 |
1 3
|
atbase |
|- ( Q e. A -> Q e. B ) |
| 11 |
9 10
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> Q e. B ) |
| 12 |
1 3 4
|
pmapssat |
|- ( ( K e. HL /\ Q e. B ) -> ( M ` Q ) C_ A ) |
| 13 |
11 12
|
syldan |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` Q ) C_ A ) |
| 14 |
|
simpr3 |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> R e. A ) |
| 15 |
1 3
|
atbase |
|- ( R e. A -> R e. B ) |
| 16 |
14 15
|
syl |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> R e. B ) |
| 17 |
1 3 4
|
pmapssat |
|- ( ( K e. HL /\ R e. B ) -> ( M ` R ) C_ A ) |
| 18 |
16 17
|
syldan |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` R ) C_ A ) |
| 19 |
3 5
|
paddass |
|- ( ( K e. HL /\ ( ( M ` X ) C_ A /\ ( M ` Q ) C_ A /\ ( M ` R ) C_ A ) ) -> ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) = ( ( M ` X ) .+ ( ( M ` Q ) .+ ( M ` R ) ) ) ) |
| 20 |
6 8 13 18 19
|
syl13anc |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) = ( ( M ` X ) .+ ( ( M ` Q ) .+ ( M ` R ) ) ) ) |
| 21 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 22 |
21
|
adantr |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> K e. Lat ) |
| 23 |
|
simpr1 |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> X e. B ) |
| 24 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ X e. B /\ Q e. B ) -> ( X .\/ Q ) e. B ) |
| 25 |
22 23 11 24
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( X .\/ Q ) e. B ) |
| 26 |
1 2 3 4 5
|
pmapjat1 |
|- ( ( K e. HL /\ ( X .\/ Q ) e. B /\ R e. A ) -> ( M ` ( ( X .\/ Q ) .\/ R ) ) = ( ( M ` ( X .\/ Q ) ) .+ ( M ` R ) ) ) |
| 27 |
6 25 14 26
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( ( X .\/ Q ) .\/ R ) ) = ( ( M ` ( X .\/ Q ) ) .+ ( M ` R ) ) ) |
| 28 |
1 2
|
latjass |
|- ( ( K e. Lat /\ ( X e. B /\ Q e. B /\ R e. B ) ) -> ( ( X .\/ Q ) .\/ R ) = ( X .\/ ( Q .\/ R ) ) ) |
| 29 |
22 23 11 16 28
|
syl13anc |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( X .\/ Q ) .\/ R ) = ( X .\/ ( Q .\/ R ) ) ) |
| 30 |
29
|
fveq2d |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( ( X .\/ Q ) .\/ R ) ) = ( M ` ( X .\/ ( Q .\/ R ) ) ) ) |
| 31 |
1 2 3 4 5
|
pmapjat1 |
|- ( ( K e. HL /\ X e. B /\ Q e. A ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
| 32 |
31
|
3adant3r3 |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( X .\/ Q ) ) = ( ( M ` X ) .+ ( M ` Q ) ) ) |
| 33 |
32
|
oveq1d |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( M ` ( X .\/ Q ) ) .+ ( M ` R ) ) = ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) ) |
| 34 |
27 30 33
|
3eqtr3d |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( X .\/ ( Q .\/ R ) ) ) = ( ( ( M ` X ) .+ ( M ` Q ) ) .+ ( M ` R ) ) ) |
| 35 |
1 2 3 4 5
|
pmapjat1 |
|- ( ( K e. HL /\ Q e. B /\ R e. A ) -> ( M ` ( Q .\/ R ) ) = ( ( M ` Q ) .+ ( M ` R ) ) ) |
| 36 |
6 11 14 35
|
syl3anc |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( Q .\/ R ) ) = ( ( M ` Q ) .+ ( M ` R ) ) ) |
| 37 |
36
|
oveq2d |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( ( M ` X ) .+ ( M ` ( Q .\/ R ) ) ) = ( ( M ` X ) .+ ( ( M ` Q ) .+ ( M ` R ) ) ) ) |
| 38 |
20 34 37
|
3eqtr4d |
|- ( ( K e. HL /\ ( X e. B /\ Q e. A /\ R e. A ) ) -> ( M ` ( X .\/ ( Q .\/ R ) ) ) = ( ( M ` X ) .+ ( M ` ( Q .\/ R ) ) ) ) |