| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmapjat.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | pmapjat.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | pmapjat.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | pmapjat.m | ⊢ 𝑀  =  ( pmap ‘ 𝐾 ) | 
						
							| 5 |  | pmapjat.p | ⊢  +   =  ( +𝑃 ‘ 𝐾 ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝐾  ∈  HL ) | 
						
							| 7 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑋 )  ⊆  𝐴 ) | 
						
							| 8 | 7 | 3ad2antr1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑀 ‘ 𝑋 )  ⊆  𝐴 ) | 
						
							| 9 |  | simpr2 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 10 | 1 3 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  𝐵 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑄  ∈  𝐵 ) | 
						
							| 12 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑄 )  ⊆  𝐴 ) | 
						
							| 13 | 11 12 | syldan | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑀 ‘ 𝑄 )  ⊆  𝐴 ) | 
						
							| 14 |  | simpr3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑅  ∈  𝐴 ) | 
						
							| 15 | 1 3 | atbase | ⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  𝐵 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑅  ∈  𝐵 ) | 
						
							| 17 | 1 3 4 | pmapssat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐵 )  →  ( 𝑀 ‘ 𝑅 )  ⊆  𝐴 ) | 
						
							| 18 | 16 17 | syldan | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑀 ‘ 𝑅 )  ⊆  𝐴 ) | 
						
							| 19 | 3 5 | paddass | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑀 ‘ 𝑋 )  ⊆  𝐴  ∧  ( 𝑀 ‘ 𝑄 )  ⊆  𝐴  ∧  ( 𝑀 ‘ 𝑅 )  ⊆  𝐴 ) )  →  ( ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) )  +  ( 𝑀 ‘ 𝑅 ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( ( 𝑀 ‘ 𝑄 )  +  ( 𝑀 ‘ 𝑅 ) ) ) ) | 
						
							| 20 | 6 8 13 18 19 | syl13anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) )  +  ( 𝑀 ‘ 𝑅 ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( ( 𝑀 ‘ 𝑄 )  +  ( 𝑀 ‘ 𝑅 ) ) ) ) | 
						
							| 21 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝐾  ∈  Lat ) | 
						
							| 23 |  | simpr1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 24 | 1 2 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑋  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 25 | 22 23 11 24 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑋  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 26 | 1 2 3 4 5 | pmapjat1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∨  𝑄 )  ∈  𝐵  ∧  𝑅  ∈  𝐴 )  →  ( 𝑀 ‘ ( ( 𝑋  ∨  𝑄 )  ∨  𝑅 ) )  =  ( ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  +  ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 27 | 6 25 14 26 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑀 ‘ ( ( 𝑋  ∨  𝑄 )  ∨  𝑅 ) )  =  ( ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  +  ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 28 | 1 2 | latjass | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐵  ∧  𝑅  ∈  𝐵 ) )  →  ( ( 𝑋  ∨  𝑄 )  ∨  𝑅 )  =  ( 𝑋  ∨  ( 𝑄  ∨  𝑅 ) ) ) | 
						
							| 29 | 22 23 11 16 28 | syl13anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( ( 𝑋  ∨  𝑄 )  ∨  𝑅 )  =  ( 𝑋  ∨  ( 𝑄  ∨  𝑅 ) ) ) | 
						
							| 30 | 29 | fveq2d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑀 ‘ ( ( 𝑋  ∨  𝑄 )  ∨  𝑅 ) )  =  ( 𝑀 ‘ ( 𝑋  ∨  ( 𝑄  ∨  𝑅 ) ) ) ) | 
						
							| 31 | 1 2 3 4 5 | pmapjat1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) ) ) | 
						
							| 32 | 31 | 3adant3r3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( ( 𝑀 ‘ ( 𝑋  ∨  𝑄 ) )  +  ( 𝑀 ‘ 𝑅 ) )  =  ( ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) )  +  ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 34 | 27 30 33 | 3eqtr3d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑀 ‘ ( 𝑋  ∨  ( 𝑄  ∨  𝑅 ) ) )  =  ( ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ 𝑄 ) )  +  ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 35 | 1 2 3 4 5 | pmapjat1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐵  ∧  𝑅  ∈  𝐴 )  →  ( 𝑀 ‘ ( 𝑄  ∨  𝑅 ) )  =  ( ( 𝑀 ‘ 𝑄 )  +  ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 36 | 6 11 14 35 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑀 ‘ ( 𝑄  ∨  𝑅 ) )  =  ( ( 𝑀 ‘ 𝑄 )  +  ( 𝑀 ‘ 𝑅 ) ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ ( 𝑄  ∨  𝑅 ) ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( ( 𝑀 ‘ 𝑄 )  +  ( 𝑀 ‘ 𝑅 ) ) ) ) | 
						
							| 38 | 20 34 37 | 3eqtr4d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑀 ‘ ( 𝑋  ∨  ( 𝑄  ∨  𝑅 ) ) )  =  ( ( 𝑀 ‘ 𝑋 )  +  ( 𝑀 ‘ ( 𝑄  ∨  𝑅 ) ) ) ) |