Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ZZ = ZZ |
2 |
|
ifeq1 |
|- ( B = C -> if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) ) |
3 |
2
|
alimi |
|- ( A. k B = C -> A. k if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) ) |
4 |
|
alral |
|- ( A. k if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) -> A. k e. ZZ if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) ) |
5 |
3 4
|
syl |
|- ( A. k B = C -> A. k e. ZZ if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) ) |
6 |
|
mpteq12 |
|- ( ( ZZ = ZZ /\ A. k e. ZZ if ( k e. A , B , 1 ) = if ( k e. A , C , 1 ) ) -> ( k e. ZZ |-> if ( k e. A , B , 1 ) ) = ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) |
7 |
1 5 6
|
sylancr |
|- ( A. k B = C -> ( k e. ZZ |-> if ( k e. A , B , 1 ) ) = ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) |
8 |
7
|
seqeq3d |
|- ( A. k B = C -> seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) = seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ) |
9 |
8
|
breq1d |
|- ( A. k B = C -> ( seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y <-> seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) |
10 |
9
|
anbi2d |
|- ( A. k B = C -> ( ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) <-> ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) ) |
11 |
10
|
exbidv |
|- ( A. k B = C -> ( E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) <-> E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) ) |
12 |
11
|
rexbidv |
|- ( A. k B = C -> ( E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) <-> E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) ) ) |
13 |
7
|
seqeq3d |
|- ( A. k B = C -> seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) = seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ) |
14 |
13
|
breq1d |
|- ( A. k B = C -> ( seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x <-> seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) |
15 |
12 14
|
3anbi23d |
|- ( A. k B = C -> ( ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) <-> ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) ) |
16 |
15
|
rexbidv |
|- ( A. k B = C -> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) <-> E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) ) ) |
17 |
|
csbeq2 |
|- ( A. k B = C -> [_ ( f ` n ) / k ]_ B = [_ ( f ` n ) / k ]_ C ) |
18 |
17
|
mpteq2dv |
|- ( A. k B = C -> ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) = ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) |
19 |
18
|
seqeq3d |
|- ( A. k B = C -> seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) = seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ) |
20 |
19
|
fveq1d |
|- ( A. k B = C -> ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) |
21 |
20
|
eqeq2d |
|- ( A. k B = C -> ( x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) <-> x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) |
22 |
21
|
anbi2d |
|- ( A. k B = C -> ( ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
23 |
22
|
exbidv |
|- ( A. k B = C -> ( E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
24 |
23
|
rexbidv |
|- ( A. k B = C -> ( E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) <-> E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
25 |
16 24
|
orbi12d |
|- ( A. k B = C -> ( ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) <-> ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) |
26 |
25
|
iotabidv |
|- ( A. k B = C -> ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) ) |
27 |
|
df-prod |
|- prod_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , B , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
28 |
|
df-prod |
|- prod_ k e. A C = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ E. n e. ( ZZ>= ` m ) E. y ( y =/= 0 /\ seq n ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> y ) /\ seq m ( x. , ( k e. ZZ |-> if ( k e. A , C , 1 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( x. , ( n e. NN |-> [_ ( f ` n ) / k ]_ C ) ) ` m ) ) ) ) |
29 |
26 27 28
|
3eqtr4g |
|- ( A. k B = C -> prod_ k e. A B = prod_ k e. A C ) |