| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sgrpidmnd.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | sgrpidmnd.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 4 | 1 3 2 | grpidval |  |-  .0. = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) | 
						
							| 5 | 4 | eqeq2i |  |-  ( e = .0. <-> e = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) ) | 
						
							| 6 |  | eleq1w |  |-  ( y = e -> ( y e. B <-> e e. B ) ) | 
						
							| 7 |  | oveq1 |  |-  ( y = e -> ( y ( +g ` G ) x ) = ( e ( +g ` G ) x ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( y = e -> ( ( y ( +g ` G ) x ) = x <-> ( e ( +g ` G ) x ) = x ) ) | 
						
							| 9 | 8 | ovanraleqv |  |-  ( y = e -> ( A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) <-> A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) | 
						
							| 10 | 6 9 | anbi12d |  |-  ( y = e -> ( ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) <-> ( e e. B /\ A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) ) | 
						
							| 11 | 10 | iotan0 |  |-  ( ( e e. B /\ e =/= (/) /\ e = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) ) -> ( e e. B /\ A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) | 
						
							| 12 |  | rsp |  |-  ( A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) | 
						
							| 13 | 11 12 | simpl2im |  |-  ( ( e e. B /\ e =/= (/) /\ e = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) ) -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) | 
						
							| 14 | 13 | 3expb |  |-  ( ( e e. B /\ ( e =/= (/) /\ e = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) ) ) -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) | 
						
							| 15 | 14 | expcom |  |-  ( ( e =/= (/) /\ e = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) ) -> ( e e. B -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) ) | 
						
							| 16 | 5 15 | sylan2b |  |-  ( ( e =/= (/) /\ e = .0. ) -> ( e e. B -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) ) | 
						
							| 17 | 16 | impcom |  |-  ( ( e e. B /\ ( e =/= (/) /\ e = .0. ) ) -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) | 
						
							| 18 | 17 | ralrimiv |  |-  ( ( e e. B /\ ( e =/= (/) /\ e = .0. ) ) -> A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) | 
						
							| 19 | 18 | ex |  |-  ( e e. B -> ( ( e =/= (/) /\ e = .0. ) -> A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) | 
						
							| 20 | 19 | reximia |  |-  ( E. e e. B ( e =/= (/) /\ e = .0. ) -> E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) | 
						
							| 21 | 20 | anim2i |  |-  ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) | 
						
							| 22 | 1 3 | ismnddef |  |-  ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) | 
						
							| 23 | 21 22 | sylibr |  |-  ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> G e. Mnd ) |