| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sgrpidmnd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | sgrpidmnd.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 4 | 1 3 2 | grpidval | ⊢  0   =  ( ℩ 𝑦 ( 𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  𝑥 ) ) ) | 
						
							| 5 | 4 | eqeq2i | ⊢ ( 𝑒  =   0   ↔  𝑒  =  ( ℩ 𝑦 ( 𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  𝑥 ) ) ) ) | 
						
							| 6 |  | eleq1w | ⊢ ( 𝑦  =  𝑒  →  ( 𝑦  ∈  𝐵  ↔  𝑒  ∈  𝐵 ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑦  =  𝑒  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑦  =  𝑒  →  ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ↔  ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥 ) ) | 
						
							| 9 | 8 | ovanraleqv | ⊢ ( 𝑦  =  𝑒  →  ( ∀ 𝑥  ∈  𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  𝑥 )  ↔  ∀ 𝑥  ∈  𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) | 
						
							| 10 | 6 9 | anbi12d | ⊢ ( 𝑦  =  𝑒  →  ( ( 𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  𝑥 ) )  ↔  ( 𝑒  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) ) | 
						
							| 11 | 10 | iotan0 | ⊢ ( ( 𝑒  ∈  𝐵  ∧  𝑒  ≠  ∅  ∧  𝑒  =  ( ℩ 𝑦 ( 𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  𝑥 ) ) ) )  →  ( 𝑒  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) | 
						
							| 12 |  | rsp | ⊢ ( ∀ 𝑥  ∈  𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 )  →  ( 𝑥  ∈  𝐵  →  ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) | 
						
							| 13 | 11 12 | simpl2im | ⊢ ( ( 𝑒  ∈  𝐵  ∧  𝑒  ≠  ∅  ∧  𝑒  =  ( ℩ 𝑦 ( 𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  𝑥 ) ) ) )  →  ( 𝑥  ∈  𝐵  →  ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) | 
						
							| 14 | 13 | 3expb | ⊢ ( ( 𝑒  ∈  𝐵  ∧  ( 𝑒  ≠  ∅  ∧  𝑒  =  ( ℩ 𝑦 ( 𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  𝑥 ) ) ) ) )  →  ( 𝑥  ∈  𝐵  →  ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) | 
						
							| 15 | 14 | expcom | ⊢ ( ( 𝑒  ≠  ∅  ∧  𝑒  =  ( ℩ 𝑦 ( 𝑦  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  𝑥 ) ) ) )  →  ( 𝑒  ∈  𝐵  →  ( 𝑥  ∈  𝐵  →  ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) ) | 
						
							| 16 | 5 15 | sylan2b | ⊢ ( ( 𝑒  ≠  ∅  ∧  𝑒  =   0  )  →  ( 𝑒  ∈  𝐵  →  ( 𝑥  ∈  𝐵  →  ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) ) | 
						
							| 17 | 16 | impcom | ⊢ ( ( 𝑒  ∈  𝐵  ∧  ( 𝑒  ≠  ∅  ∧  𝑒  =   0  ) )  →  ( 𝑥  ∈  𝐵  →  ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) | 
						
							| 18 | 17 | ralrimiv | ⊢ ( ( 𝑒  ∈  𝐵  ∧  ( 𝑒  ≠  ∅  ∧  𝑒  =   0  ) )  →  ∀ 𝑥  ∈  𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) | 
						
							| 19 | 18 | ex | ⊢ ( 𝑒  ∈  𝐵  →  ( ( 𝑒  ≠  ∅  ∧  𝑒  =   0  )  →  ∀ 𝑥  ∈  𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) | 
						
							| 20 | 19 | reximia | ⊢ ( ∃ 𝑒  ∈  𝐵 ( 𝑒  ≠  ∅  ∧  𝑒  =   0  )  →  ∃ 𝑒  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) | 
						
							| 21 | 20 | anim2i | ⊢ ( ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑒  ∈  𝐵 ( 𝑒  ≠  ∅  ∧  𝑒  =   0  ) )  →  ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑒  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) | 
						
							| 22 | 1 3 | ismnddef | ⊢ ( 𝐺  ∈  Mnd  ↔  ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑒  ∈  𝐵 ∀ 𝑥  ∈  𝐵 ( ( 𝑒 ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐺 ) 𝑒 )  =  𝑥 ) ) ) | 
						
							| 23 | 21 22 | sylibr | ⊢ ( ( 𝐺  ∈  Smgrp  ∧  ∃ 𝑒  ∈  𝐵 ( 𝑒  ≠  ∅  ∧  𝑒  =   0  ) )  →  𝐺  ∈  Mnd ) |