Step |
Hyp |
Ref |
Expression |
1 |
|
1n0 |
|- 1o =/= (/) |
2 |
1
|
neii |
|- -. 1o = (/) |
3 |
|
eqtr2 |
|- ( ( x = 1o /\ x = (/) ) -> 1o = (/) ) |
4 |
2 3
|
mto |
|- -. ( x = 1o /\ x = (/) ) |
5 |
|
1on |
|- 1o e. On |
6 |
|
0elon |
|- (/) e. On |
7 |
|
df-2o |
|- 2o = suc 1o |
8 |
|
df-1o |
|- 1o = suc (/) |
9 |
7 8
|
eqeq12i |
|- ( 2o = 1o <-> suc 1o = suc (/) ) |
10 |
|
suc11 |
|- ( ( 1o e. On /\ (/) e. On ) -> ( suc 1o = suc (/) <-> 1o = (/) ) ) |
11 |
9 10
|
syl5bb |
|- ( ( 1o e. On /\ (/) e. On ) -> ( 2o = 1o <-> 1o = (/) ) ) |
12 |
5 6 11
|
mp2an |
|- ( 2o = 1o <-> 1o = (/) ) |
13 |
1 12
|
nemtbir |
|- -. 2o = 1o |
14 |
|
eqtr2 |
|- ( ( x = 2o /\ x = 1o ) -> 2o = 1o ) |
15 |
14
|
ancoms |
|- ( ( x = 1o /\ x = 2o ) -> 2o = 1o ) |
16 |
13 15
|
mto |
|- -. ( x = 1o /\ x = 2o ) |
17 |
|
nsuceq0 |
|- suc 1o =/= (/) |
18 |
7
|
eqeq1i |
|- ( 2o = (/) <-> suc 1o = (/) ) |
19 |
17 18
|
nemtbir |
|- -. 2o = (/) |
20 |
|
eqtr2 |
|- ( ( x = 2o /\ x = (/) ) -> 2o = (/) ) |
21 |
20
|
ancoms |
|- ( ( x = (/) /\ x = 2o ) -> 2o = (/) ) |
22 |
19 21
|
mto |
|- -. ( x = (/) /\ x = 2o ) |
23 |
4 16 22
|
3pm3.2ni |
|- -. ( ( x = 1o /\ x = (/) ) \/ ( x = 1o /\ x = 2o ) \/ ( x = (/) /\ x = 2o ) ) |
24 |
|
vex |
|- x e. _V |
25 |
24 24
|
brtp |
|- ( x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } x <-> ( ( x = 1o /\ x = (/) ) \/ ( x = 1o /\ x = 2o ) \/ ( x = (/) /\ x = 2o ) ) ) |
26 |
23 25
|
mtbir |
|- -. x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } x |
27 |
26
|
a1i |
|- ( x e. { 1o , 2o , (/) } -> -. x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } x ) |
28 |
|
vex |
|- y e. _V |
29 |
24 28
|
brtp |
|- ( x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } y <-> ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) ) |
30 |
|
vex |
|- z e. _V |
31 |
28 30
|
brtp |
|- ( y { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } z <-> ( ( y = 1o /\ z = (/) ) \/ ( y = 1o /\ z = 2o ) \/ ( y = (/) /\ z = 2o ) ) ) |
32 |
|
eqtr2 |
|- ( ( y = 1o /\ y = (/) ) -> 1o = (/) ) |
33 |
2 32
|
mto |
|- -. ( y = 1o /\ y = (/) ) |
34 |
33
|
pm2.21i |
|- ( ( y = 1o /\ y = (/) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
35 |
34
|
ad2ant2rl |
|- ( ( ( y = 1o /\ z = (/) ) /\ ( x = 1o /\ y = (/) ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
36 |
35
|
expcom |
|- ( ( x = 1o /\ y = (/) ) -> ( ( y = 1o /\ z = (/) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
37 |
34
|
ad2ant2rl |
|- ( ( ( y = 1o /\ z = 2o ) /\ ( x = 1o /\ y = (/) ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
38 |
37
|
expcom |
|- ( ( x = 1o /\ y = (/) ) -> ( ( y = 1o /\ z = 2o ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
39 |
|
3mix2 |
|- ( ( x = 1o /\ z = 2o ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
40 |
39
|
ad2ant2rl |
|- ( ( ( x = 1o /\ y = (/) ) /\ ( y = (/) /\ z = 2o ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
41 |
40
|
ex |
|- ( ( x = 1o /\ y = (/) ) -> ( ( y = (/) /\ z = 2o ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
42 |
36 38 41
|
3jaod |
|- ( ( x = 1o /\ y = (/) ) -> ( ( ( y = 1o /\ z = (/) ) \/ ( y = 1o /\ z = 2o ) \/ ( y = (/) /\ z = 2o ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
43 |
|
eqtr2 |
|- ( ( y = 2o /\ y = 1o ) -> 2o = 1o ) |
44 |
13 43
|
mto |
|- -. ( y = 2o /\ y = 1o ) |
45 |
44
|
pm2.21i |
|- ( ( y = 2o /\ y = 1o ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
46 |
45
|
ad2ant2lr |
|- ( ( ( x = 1o /\ y = 2o ) /\ ( y = 1o /\ z = (/) ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
47 |
46
|
ex |
|- ( ( x = 1o /\ y = 2o ) -> ( ( y = 1o /\ z = (/) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
48 |
45
|
ad2ant2lr |
|- ( ( ( x = 1o /\ y = 2o ) /\ ( y = 1o /\ z = 2o ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
49 |
48
|
ex |
|- ( ( x = 1o /\ y = 2o ) -> ( ( y = 1o /\ z = 2o ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
50 |
|
eqtr2 |
|- ( ( y = 2o /\ y = (/) ) -> 2o = (/) ) |
51 |
19 50
|
mto |
|- -. ( y = 2o /\ y = (/) ) |
52 |
51
|
pm2.21i |
|- ( ( y = 2o /\ y = (/) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
53 |
52
|
ad2ant2lr |
|- ( ( ( x = 1o /\ y = 2o ) /\ ( y = (/) /\ z = 2o ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
54 |
53
|
ex |
|- ( ( x = 1o /\ y = 2o ) -> ( ( y = (/) /\ z = 2o ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
55 |
47 49 54
|
3jaod |
|- ( ( x = 1o /\ y = 2o ) -> ( ( ( y = 1o /\ z = (/) ) \/ ( y = 1o /\ z = 2o ) \/ ( y = (/) /\ z = 2o ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
56 |
45
|
ad2ant2lr |
|- ( ( ( x = (/) /\ y = 2o ) /\ ( y = 1o /\ z = (/) ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
57 |
56
|
ex |
|- ( ( x = (/) /\ y = 2o ) -> ( ( y = 1o /\ z = (/) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
58 |
45
|
ad2ant2lr |
|- ( ( ( x = (/) /\ y = 2o ) /\ ( y = 1o /\ z = 2o ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
59 |
58
|
ex |
|- ( ( x = (/) /\ y = 2o ) -> ( ( y = 1o /\ z = 2o ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
60 |
52
|
ad2ant2lr |
|- ( ( ( x = (/) /\ y = 2o ) /\ ( y = (/) /\ z = 2o ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
61 |
60
|
ex |
|- ( ( x = (/) /\ y = 2o ) -> ( ( y = (/) /\ z = 2o ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
62 |
57 59 61
|
3jaod |
|- ( ( x = (/) /\ y = 2o ) -> ( ( ( y = 1o /\ z = (/) ) \/ ( y = 1o /\ z = 2o ) \/ ( y = (/) /\ z = 2o ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
63 |
42 55 62
|
3jaoi |
|- ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) -> ( ( ( y = 1o /\ z = (/) ) \/ ( y = 1o /\ z = 2o ) \/ ( y = (/) /\ z = 2o ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) ) |
64 |
63
|
imp |
|- ( ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) /\ ( ( y = 1o /\ z = (/) ) \/ ( y = 1o /\ z = 2o ) \/ ( y = (/) /\ z = 2o ) ) ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
65 |
29 31 64
|
syl2anb |
|- ( ( x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } y /\ y { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } z ) -> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
66 |
24 30
|
brtp |
|- ( x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } z <-> ( ( x = 1o /\ z = (/) ) \/ ( x = 1o /\ z = 2o ) \/ ( x = (/) /\ z = 2o ) ) ) |
67 |
65 66
|
sylibr |
|- ( ( x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } y /\ y { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } z ) -> x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } z ) |
68 |
67
|
a1i |
|- ( ( x e. { 1o , 2o , (/) } /\ y e. { 1o , 2o , (/) } /\ z e. { 1o , 2o , (/) } ) -> ( ( x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } y /\ y { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } z ) -> x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } z ) ) |
69 |
24
|
eltp |
|- ( x e. { 1o , 2o , (/) } <-> ( x = 1o \/ x = 2o \/ x = (/) ) ) |
70 |
28
|
eltp |
|- ( y e. { 1o , 2o , (/) } <-> ( y = 1o \/ y = 2o \/ y = (/) ) ) |
71 |
|
eqtr3 |
|- ( ( x = 1o /\ y = 1o ) -> x = y ) |
72 |
71
|
3mix2d |
|- ( ( x = 1o /\ y = 1o ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
73 |
72
|
ex |
|- ( x = 1o -> ( y = 1o -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
74 |
|
3mix2 |
|- ( ( x = 1o /\ y = 2o ) -> ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) ) |
75 |
74
|
3mix1d |
|- ( ( x = 1o /\ y = 2o ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
76 |
75
|
ex |
|- ( x = 1o -> ( y = 2o -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
77 |
|
3mix1 |
|- ( ( x = 1o /\ y = (/) ) -> ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) ) |
78 |
77
|
3mix1d |
|- ( ( x = 1o /\ y = (/) ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
79 |
78
|
ex |
|- ( x = 1o -> ( y = (/) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
80 |
73 76 79
|
3jaod |
|- ( x = 1o -> ( ( y = 1o \/ y = 2o \/ y = (/) ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
81 |
|
3mix2 |
|- ( ( y = 1o /\ x = 2o ) -> ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) |
82 |
81
|
3mix3d |
|- ( ( y = 1o /\ x = 2o ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
83 |
82
|
expcom |
|- ( x = 2o -> ( y = 1o -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
84 |
|
eqtr3 |
|- ( ( x = 2o /\ y = 2o ) -> x = y ) |
85 |
84
|
3mix2d |
|- ( ( x = 2o /\ y = 2o ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
86 |
85
|
ex |
|- ( x = 2o -> ( y = 2o -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
87 |
|
3mix3 |
|- ( ( y = (/) /\ x = 2o ) -> ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) |
88 |
87
|
3mix3d |
|- ( ( y = (/) /\ x = 2o ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
89 |
88
|
expcom |
|- ( x = 2o -> ( y = (/) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
90 |
83 86 89
|
3jaod |
|- ( x = 2o -> ( ( y = 1o \/ y = 2o \/ y = (/) ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
91 |
|
3mix1 |
|- ( ( y = 1o /\ x = (/) ) -> ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) |
92 |
91
|
3mix3d |
|- ( ( y = 1o /\ x = (/) ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
93 |
92
|
expcom |
|- ( x = (/) -> ( y = 1o -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
94 |
|
3mix3 |
|- ( ( x = (/) /\ y = 2o ) -> ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) ) |
95 |
94
|
3mix1d |
|- ( ( x = (/) /\ y = 2o ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
96 |
95
|
ex |
|- ( x = (/) -> ( y = 2o -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
97 |
|
eqtr3 |
|- ( ( x = (/) /\ y = (/) ) -> x = y ) |
98 |
97
|
3mix2d |
|- ( ( x = (/) /\ y = (/) ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
99 |
98
|
ex |
|- ( x = (/) -> ( y = (/) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
100 |
93 96 99
|
3jaod |
|- ( x = (/) -> ( ( y = 1o \/ y = 2o \/ y = (/) ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
101 |
80 90 100
|
3jaoi |
|- ( ( x = 1o \/ x = 2o \/ x = (/) ) -> ( ( y = 1o \/ y = 2o \/ y = (/) ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) ) |
102 |
101
|
imp |
|- ( ( ( x = 1o \/ x = 2o \/ x = (/) ) /\ ( y = 1o \/ y = 2o \/ y = (/) ) ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
103 |
69 70 102
|
syl2anb |
|- ( ( x e. { 1o , 2o , (/) } /\ y e. { 1o , 2o , (/) } ) -> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
104 |
|
biid |
|- ( x = y <-> x = y ) |
105 |
28 24
|
brtp |
|- ( y { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } x <-> ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) |
106 |
29 104 105
|
3orbi123i |
|- ( ( x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } y \/ x = y \/ y { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } x ) <-> ( ( ( x = 1o /\ y = (/) ) \/ ( x = 1o /\ y = 2o ) \/ ( x = (/) /\ y = 2o ) ) \/ x = y \/ ( ( y = 1o /\ x = (/) ) \/ ( y = 1o /\ x = 2o ) \/ ( y = (/) /\ x = 2o ) ) ) ) |
107 |
103 106
|
sylibr |
|- ( ( x e. { 1o , 2o , (/) } /\ y e. { 1o , 2o , (/) } ) -> ( x { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } y \/ x = y \/ y { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } x ) ) |
108 |
27 68 107
|
issoi |
|- { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } Or { 1o , 2o , (/) } |
109 |
|
df-tp |
|- { 1o , 2o , (/) } = ( { 1o , 2o } u. { (/) } ) |
110 |
|
soeq2 |
|- ( { 1o , 2o , (/) } = ( { 1o , 2o } u. { (/) } ) -> ( { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } Or { 1o , 2o , (/) } <-> { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } Or ( { 1o , 2o } u. { (/) } ) ) ) |
111 |
109 110
|
ax-mp |
|- ( { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } Or { 1o , 2o , (/) } <-> { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } Or ( { 1o , 2o } u. { (/) } ) ) |
112 |
108 111
|
mpbi |
|- { <. 1o , (/) >. , <. 1o , 2o >. , <. (/) , 2o >. } Or ( { 1o , 2o } u. { (/) } ) |