Metamath Proof Explorer


Theorem subcn2

Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion subcn2
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) )

Proof

Step Hyp Ref Expression
1 negcl
 |-  ( C e. CC -> -u C e. CC )
2 addcn2
 |-  ( ( A e. RR+ /\ B e. CC /\ -u C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) )
3 1 2 syl3an3
 |-  ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) )
4 negcl
 |-  ( v e. CC -> -u v e. CC )
5 fvoveq1
 |-  ( w = -u v -> ( abs ` ( w - -u C ) ) = ( abs ` ( -u v - -u C ) ) )
6 5 breq1d
 |-  ( w = -u v -> ( ( abs ` ( w - -u C ) ) < z <-> ( abs ` ( -u v - -u C ) ) < z ) )
7 6 anbi2d
 |-  ( w = -u v -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) ) )
8 oveq2
 |-  ( w = -u v -> ( u + w ) = ( u + -u v ) )
9 8 fvoveq1d
 |-  ( w = -u v -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) = ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) )
10 9 breq1d
 |-  ( w = -u v -> ( ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A <-> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) )
11 7 10 imbi12d
 |-  ( w = -u v -> ( ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) ) )
12 11 rspcv
 |-  ( -u v e. CC -> ( A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) ) )
13 4 12 syl
 |-  ( v e. CC -> ( A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) ) )
14 13 adantl
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) ) )
15 simpr
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> v e. CC )
16 simpll3
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> C e. CC )
17 15 16 neg2subd
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( -u v - -u C ) = ( C - v ) )
18 17 fveq2d
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( abs ` ( -u v - -u C ) ) = ( abs ` ( C - v ) ) )
19 16 15 abssubd
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( abs ` ( C - v ) ) = ( abs ` ( v - C ) ) )
20 18 19 eqtrd
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( abs ` ( -u v - -u C ) ) = ( abs ` ( v - C ) ) )
21 20 breq1d
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( ( abs ` ( -u v - -u C ) ) < z <-> ( abs ` ( v - C ) ) < z ) )
22 21 anbi2d
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) ) )
23 negsub
 |-  ( ( u e. CC /\ v e. CC ) -> ( u + -u v ) = ( u - v ) )
24 23 adantll
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( u + -u v ) = ( u - v ) )
25 simpll2
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> B e. CC )
26 25 16 negsubd
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( B + -u C ) = ( B - C ) )
27 24 26 oveq12d
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( ( u + -u v ) - ( B + -u C ) ) = ( ( u - v ) - ( B - C ) ) )
28 27 fveq2d
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) = ( abs ` ( ( u - v ) - ( B - C ) ) ) )
29 28 breq1d
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A <-> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) )
30 22 29 imbi12d
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( -u v - -u C ) ) < z ) -> ( abs ` ( ( u + -u v ) - ( B + -u C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) )
31 14 30 sylibd
 |-  ( ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) /\ v e. CC ) -> ( A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) )
32 31 ralrimdva
 |-  ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ u e. CC ) -> ( A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) )
33 32 ralimdva
 |-  ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( A. u e. CC A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) )
34 33 reximdv
 |-  ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( E. z e. RR+ A. u e. CC A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) )
35 34 reximdv
 |-  ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( E. y e. RR+ E. z e. RR+ A. u e. CC A. w e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( w - -u C ) ) < z ) -> ( abs ` ( ( u + w ) - ( B + -u C ) ) ) < A ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) ) )
36 3 35 mpd
 |-  ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u - v ) - ( B - C ) ) ) < A ) )