Step |
Hyp |
Ref |
Expression |
1 |
|
trljat.l |
|- .<_ = ( le ` K ) |
2 |
|
trljat.j |
|- .\/ = ( join ` K ) |
3 |
|
trljat.a |
|- A = ( Atoms ` K ) |
4 |
|
trljat.h |
|- H = ( LHyp ` K ) |
5 |
|
trljat.t |
|- T = ( ( LTrn ` K ) ` W ) |
6 |
|
trljat.r |
|- R = ( ( trL ` K ) ` W ) |
7 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> K e. HL ) |
8 |
1 3 4 5
|
ltrnat |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A ) |
9 |
8
|
3adant3r |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) e. A ) |
10 |
7
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> K e. Lat ) |
11 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> P e. A ) |
12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
13 |
12 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
14 |
11 13
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> P e. ( Base ` K ) ) |
15 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> F e. T ) |
17 |
12 4 5
|
ltrncl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. ( Base ` K ) ) -> ( F ` P ) e. ( Base ` K ) ) |
18 |
15 16 14 17
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) e. ( Base ` K ) ) |
19 |
12 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( F ` P ) e. ( Base ` K ) ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
20 |
10 14 18 19
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) |
21 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> W e. H ) |
22 |
12 4
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
23 |
21 22
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> W e. ( Base ` K ) ) |
24 |
12 1 2
|
latlej2 |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( F ` P ) e. ( Base ` K ) ) -> ( F ` P ) .<_ ( P .\/ ( F ` P ) ) ) |
25 |
10 14 18 24
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) .<_ ( P .\/ ( F ` P ) ) ) |
26 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
27 |
12 1 2 26 3
|
atmod2i1 |
|- ( ( K e. HL /\ ( ( F ` P ) e. A /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ ( F ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ ( F ` P ) ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( W .\/ ( F ` P ) ) ) ) |
28 |
7 9 20 23 25 27
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ ( F ` P ) ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( W .\/ ( F ` P ) ) ) ) |
29 |
1 3 4 5
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
30 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
31 |
1 2 30 3 4
|
lhpjat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) -> ( W .\/ ( F ` P ) ) = ( 1. ` K ) ) |
32 |
7 21 29 31
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ ( F ` P ) ) = ( 1. ` K ) ) |
33 |
32
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( W .\/ ( F ` P ) ) ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( 1. ` K ) ) ) |
34 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
35 |
7 34
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> K e. OL ) |
36 |
12 26 30
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( 1. ` K ) ) = ( P .\/ ( F ` P ) ) ) |
37 |
35 20 36
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( 1. ` K ) ) = ( P .\/ ( F ` P ) ) ) |
38 |
28 33 37
|
3eqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( F ` P ) ) = ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ ( F ` P ) ) ) |
39 |
1 2 26 3 4 5 6
|
trlval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) ) |
40 |
39
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( R ` F ) .\/ ( F ` P ) ) = ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ ( F ` P ) ) ) |
41 |
12 4 5 6
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) e. ( Base ` K ) ) |
42 |
15 16 41
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) e. ( Base ` K ) ) |
43 |
12 2
|
latjcom |
|- ( ( K e. Lat /\ ( R ` F ) e. ( Base ` K ) /\ ( F ` P ) e. ( Base ` K ) ) -> ( ( R ` F ) .\/ ( F ` P ) ) = ( ( F ` P ) .\/ ( R ` F ) ) ) |
44 |
10 42 18 43
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( R ` F ) .\/ ( F ` P ) ) = ( ( F ` P ) .\/ ( R ` F ) ) ) |
45 |
38 40 44
|
3eqtr2rd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) .\/ ( R ` F ) ) = ( P .\/ ( F ` P ) ) ) |