Metamath Proof Explorer


Theorem trljat2

Description: The value of a translation of an atom P not under the fiducial co-atom W , joined with trace. Equation above Lemma C in Crawley p. 112. (Contributed by NM, 25-May-2012)

Ref Expression
Hypotheses trljat.l
|- .<_ = ( le ` K )
trljat.j
|- .\/ = ( join ` K )
trljat.a
|- A = ( Atoms ` K )
trljat.h
|- H = ( LHyp ` K )
trljat.t
|- T = ( ( LTrn ` K ) ` W )
trljat.r
|- R = ( ( trL ` K ) ` W )
Assertion trljat2
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) .\/ ( R ` F ) ) = ( P .\/ ( F ` P ) ) )

Proof

Step Hyp Ref Expression
1 trljat.l
 |-  .<_ = ( le ` K )
2 trljat.j
 |-  .\/ = ( join ` K )
3 trljat.a
 |-  A = ( Atoms ` K )
4 trljat.h
 |-  H = ( LHyp ` K )
5 trljat.t
 |-  T = ( ( LTrn ` K ) ` W )
6 trljat.r
 |-  R = ( ( trL ` K ) ` W )
7 simp1l
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> K e. HL )
8 1 3 4 5 ltrnat
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. A ) -> ( F ` P ) e. A )
9 8 3adant3r
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) e. A )
10 7 hllatd
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> K e. Lat )
11 simp3l
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> P e. A )
12 eqid
 |-  ( Base ` K ) = ( Base ` K )
13 12 3 atbase
 |-  ( P e. A -> P e. ( Base ` K ) )
14 11 13 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> P e. ( Base ` K ) )
15 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( K e. HL /\ W e. H ) )
16 simp2
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> F e. T )
17 12 4 5 ltrncl
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ P e. ( Base ` K ) ) -> ( F ` P ) e. ( Base ` K ) )
18 15 16 14 17 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) e. ( Base ` K ) )
19 12 2 latjcl
 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( F ` P ) e. ( Base ` K ) ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) )
20 10 14 18 19 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( F ` P ) ) e. ( Base ` K ) )
21 simp1r
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> W e. H )
22 12 4 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
23 21 22 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> W e. ( Base ` K ) )
24 12 1 2 latlej2
 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ ( F ` P ) e. ( Base ` K ) ) -> ( F ` P ) .<_ ( P .\/ ( F ` P ) ) )
25 10 14 18 24 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) .<_ ( P .\/ ( F ` P ) ) )
26 eqid
 |-  ( meet ` K ) = ( meet ` K )
27 12 1 2 26 3 atmod2i1
 |-  ( ( K e. HL /\ ( ( F ` P ) e. A /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ ( F ` P ) .<_ ( P .\/ ( F ` P ) ) ) -> ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ ( F ` P ) ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( W .\/ ( F ` P ) ) ) )
28 7 9 20 23 25 27 syl131anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ ( F ` P ) ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( W .\/ ( F ` P ) ) ) )
29 1 3 4 5 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) )
30 eqid
 |-  ( 1. ` K ) = ( 1. ` K )
31 1 2 30 3 4 lhpjat1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) -> ( W .\/ ( F ` P ) ) = ( 1. ` K ) )
32 7 21 29 31 syl21anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( W .\/ ( F ` P ) ) = ( 1. ` K ) )
33 32 oveq2d
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( W .\/ ( F ` P ) ) ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( 1. ` K ) ) )
34 hlol
 |-  ( K e. HL -> K e. OL )
35 7 34 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> K e. OL )
36 12 26 30 olm11
 |-  ( ( K e. OL /\ ( P .\/ ( F ` P ) ) e. ( Base ` K ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( 1. ` K ) ) = ( P .\/ ( F ` P ) ) )
37 35 20 36 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( P .\/ ( F ` P ) ) ( meet ` K ) ( 1. ` K ) ) = ( P .\/ ( F ` P ) ) )
38 28 33 37 3eqtrrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( F ` P ) ) = ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ ( F ` P ) ) )
39 1 2 26 3 4 5 6 trlval2
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) = ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) )
40 39 oveq1d
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( R ` F ) .\/ ( F ` P ) ) = ( ( ( P .\/ ( F ` P ) ) ( meet ` K ) W ) .\/ ( F ` P ) ) )
41 12 4 5 6 trlcl
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` F ) e. ( Base ` K ) )
42 15 16 41 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( R ` F ) e. ( Base ` K ) )
43 12 2 latjcom
 |-  ( ( K e. Lat /\ ( R ` F ) e. ( Base ` K ) /\ ( F ` P ) e. ( Base ` K ) ) -> ( ( R ` F ) .\/ ( F ` P ) ) = ( ( F ` P ) .\/ ( R ` F ) ) )
44 10 42 18 43 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( R ` F ) .\/ ( F ` P ) ) = ( ( F ` P ) .\/ ( R ` F ) ) )
45 38 40 44 3eqtr2rd
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) .\/ ( R ` F ) ) = ( P .\/ ( F ` P ) ) )