| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ulmshft.z |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
ulmshft.w |
|- W = ( ZZ>= ` ( M + K ) ) |
| 3 |
|
ulmshft.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
ulmshft.k |
|- ( ph -> K e. ZZ ) |
| 5 |
|
ulmshft.f |
|- ( ph -> F : Z --> ( CC ^m S ) ) |
| 6 |
|
ulmshft.h |
|- ( ph -> H = ( n e. W |-> ( F ` ( n - K ) ) ) ) |
| 7 |
1 2 3 4 5 6
|
ulmshftlem |
|- ( ph -> ( F ( ~~>u ` S ) G -> H ( ~~>u ` S ) G ) ) |
| 8 |
|
eqid |
|- ( ZZ>= ` ( ( M + K ) + -u K ) ) = ( ZZ>= ` ( ( M + K ) + -u K ) ) |
| 9 |
3 4
|
zaddcld |
|- ( ph -> ( M + K ) e. ZZ ) |
| 10 |
4
|
znegcld |
|- ( ph -> -u K e. ZZ ) |
| 11 |
5
|
adantr |
|- ( ( ph /\ n e. W ) -> F : Z --> ( CC ^m S ) ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ n e. W ) -> M e. ZZ ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ n e. W ) -> K e. ZZ ) |
| 14 |
|
simpr |
|- ( ( ph /\ n e. W ) -> n e. W ) |
| 15 |
14 2
|
eleqtrdi |
|- ( ( ph /\ n e. W ) -> n e. ( ZZ>= ` ( M + K ) ) ) |
| 16 |
|
eluzsub |
|- ( ( M e. ZZ /\ K e. ZZ /\ n e. ( ZZ>= ` ( M + K ) ) ) -> ( n - K ) e. ( ZZ>= ` M ) ) |
| 17 |
12 13 15 16
|
syl3anc |
|- ( ( ph /\ n e. W ) -> ( n - K ) e. ( ZZ>= ` M ) ) |
| 18 |
17 1
|
eleqtrrdi |
|- ( ( ph /\ n e. W ) -> ( n - K ) e. Z ) |
| 19 |
11 18
|
ffvelcdmd |
|- ( ( ph /\ n e. W ) -> ( F ` ( n - K ) ) e. ( CC ^m S ) ) |
| 20 |
6 19
|
fmpt3d |
|- ( ph -> H : W --> ( CC ^m S ) ) |
| 21 |
|
simpr |
|- ( ( ph /\ m e. Z ) -> m e. Z ) |
| 22 |
21 1
|
eleqtrdi |
|- ( ( ph /\ m e. Z ) -> m e. ( ZZ>= ` M ) ) |
| 23 |
|
eluzelz |
|- ( m e. ( ZZ>= ` M ) -> m e. ZZ ) |
| 24 |
22 23
|
syl |
|- ( ( ph /\ m e. Z ) -> m e. ZZ ) |
| 25 |
24
|
zcnd |
|- ( ( ph /\ m e. Z ) -> m e. CC ) |
| 26 |
4
|
zcnd |
|- ( ph -> K e. CC ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ m e. Z ) -> K e. CC ) |
| 28 |
25 27
|
subnegd |
|- ( ( ph /\ m e. Z ) -> ( m - -u K ) = ( m + K ) ) |
| 29 |
28
|
fveq2d |
|- ( ( ph /\ m e. Z ) -> ( H ` ( m - -u K ) ) = ( H ` ( m + K ) ) ) |
| 30 |
6
|
adantr |
|- ( ( ph /\ m e. Z ) -> H = ( n e. W |-> ( F ` ( n - K ) ) ) ) |
| 31 |
30
|
fveq1d |
|- ( ( ph /\ m e. Z ) -> ( H ` ( m + K ) ) = ( ( n e. W |-> ( F ` ( n - K ) ) ) ` ( m + K ) ) ) |
| 32 |
4
|
adantr |
|- ( ( ph /\ m e. Z ) -> K e. ZZ ) |
| 33 |
|
eluzadd |
|- ( ( m e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( m + K ) e. ( ZZ>= ` ( M + K ) ) ) |
| 34 |
22 32 33
|
syl2anc |
|- ( ( ph /\ m e. Z ) -> ( m + K ) e. ( ZZ>= ` ( M + K ) ) ) |
| 35 |
34 2
|
eleqtrrdi |
|- ( ( ph /\ m e. Z ) -> ( m + K ) e. W ) |
| 36 |
|
fvoveq1 |
|- ( n = ( m + K ) -> ( F ` ( n - K ) ) = ( F ` ( ( m + K ) - K ) ) ) |
| 37 |
|
eqid |
|- ( n e. W |-> ( F ` ( n - K ) ) ) = ( n e. W |-> ( F ` ( n - K ) ) ) |
| 38 |
|
fvex |
|- ( F ` ( ( m + K ) - K ) ) e. _V |
| 39 |
36 37 38
|
fvmpt |
|- ( ( m + K ) e. W -> ( ( n e. W |-> ( F ` ( n - K ) ) ) ` ( m + K ) ) = ( F ` ( ( m + K ) - K ) ) ) |
| 40 |
35 39
|
syl |
|- ( ( ph /\ m e. Z ) -> ( ( n e. W |-> ( F ` ( n - K ) ) ) ` ( m + K ) ) = ( F ` ( ( m + K ) - K ) ) ) |
| 41 |
25 27
|
pncand |
|- ( ( ph /\ m e. Z ) -> ( ( m + K ) - K ) = m ) |
| 42 |
41
|
fveq2d |
|- ( ( ph /\ m e. Z ) -> ( F ` ( ( m + K ) - K ) ) = ( F ` m ) ) |
| 43 |
40 42
|
eqtrd |
|- ( ( ph /\ m e. Z ) -> ( ( n e. W |-> ( F ` ( n - K ) ) ) ` ( m + K ) ) = ( F ` m ) ) |
| 44 |
29 31 43
|
3eqtrd |
|- ( ( ph /\ m e. Z ) -> ( H ` ( m - -u K ) ) = ( F ` m ) ) |
| 45 |
44
|
mpteq2dva |
|- ( ph -> ( m e. Z |-> ( H ` ( m - -u K ) ) ) = ( m e. Z |-> ( F ` m ) ) ) |
| 46 |
3
|
zcnd |
|- ( ph -> M e. CC ) |
| 47 |
10
|
zcnd |
|- ( ph -> -u K e. CC ) |
| 48 |
46 26 47
|
addassd |
|- ( ph -> ( ( M + K ) + -u K ) = ( M + ( K + -u K ) ) ) |
| 49 |
26
|
negidd |
|- ( ph -> ( K + -u K ) = 0 ) |
| 50 |
49
|
oveq2d |
|- ( ph -> ( M + ( K + -u K ) ) = ( M + 0 ) ) |
| 51 |
46
|
addridd |
|- ( ph -> ( M + 0 ) = M ) |
| 52 |
48 50 51
|
3eqtrd |
|- ( ph -> ( ( M + K ) + -u K ) = M ) |
| 53 |
52
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( ( M + K ) + -u K ) ) = ( ZZ>= ` M ) ) |
| 54 |
53 1
|
eqtr4di |
|- ( ph -> ( ZZ>= ` ( ( M + K ) + -u K ) ) = Z ) |
| 55 |
54
|
mpteq1d |
|- ( ph -> ( m e. ( ZZ>= ` ( ( M + K ) + -u K ) ) |-> ( H ` ( m - -u K ) ) ) = ( m e. Z |-> ( H ` ( m - -u K ) ) ) ) |
| 56 |
5
|
feqmptd |
|- ( ph -> F = ( m e. Z |-> ( F ` m ) ) ) |
| 57 |
45 55 56
|
3eqtr4rd |
|- ( ph -> F = ( m e. ( ZZ>= ` ( ( M + K ) + -u K ) ) |-> ( H ` ( m - -u K ) ) ) ) |
| 58 |
2 8 9 10 20 57
|
ulmshftlem |
|- ( ph -> ( H ( ~~>u ` S ) G -> F ( ~~>u ` S ) G ) ) |
| 59 |
7 58
|
impbid |
|- ( ph -> ( F ( ~~>u ` S ) G <-> H ( ~~>u ` S ) G ) ) |