Metamath Proof Explorer


Theorem unirep

Description: Define a quantity whose definition involves a choice of representative, but which is uniquely determined regardless of the choice. (Contributed by Jeff Madsen, 1-Jun-2011)

Ref Expression
Hypotheses unirep.1
|- ( y = D -> ( ph <-> ps ) )
unirep.2
|- ( y = D -> B = C )
unirep.3
|- ( y = z -> ( ph <-> ch ) )
unirep.4
|- ( y = z -> B = F )
unirep.5
|- B e. _V
Assertion unirep
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> ( iota x E. y e. A ( ph /\ x = B ) ) = C )

Proof

Step Hyp Ref Expression
1 unirep.1
 |-  ( y = D -> ( ph <-> ps ) )
2 unirep.2
 |-  ( y = D -> B = C )
3 unirep.3
 |-  ( y = z -> ( ph <-> ch ) )
4 unirep.4
 |-  ( y = z -> B = F )
5 unirep.5
 |-  B e. _V
6 eqidd
 |-  ( ps -> C = C )
7 6 ancli
 |-  ( ps -> ( ps /\ C = C ) )
8 2 eqeq2d
 |-  ( y = D -> ( C = B <-> C = C ) )
9 1 8 anbi12d
 |-  ( y = D -> ( ( ph /\ C = B ) <-> ( ps /\ C = C ) ) )
10 9 rspcev
 |-  ( ( D e. A /\ ( ps /\ C = C ) ) -> E. y e. A ( ph /\ C = B ) )
11 7 10 sylan2
 |-  ( ( D e. A /\ ps ) -> E. y e. A ( ph /\ C = B ) )
12 11 adantl
 |-  ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> E. y e. A ( ph /\ C = B ) )
13 nfcvd
 |-  ( D e. A -> F/_ y C )
14 13 2 csbiegf
 |-  ( D e. A -> [_ D / y ]_ B = C )
15 5 csbex
 |-  [_ D / y ]_ B e. _V
16 14 15 eqeltrrdi
 |-  ( D e. A -> C e. _V )
17 16 ad2antrl
 |-  ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> C e. _V )
18 eqeq1
 |-  ( x = C -> ( x = B <-> C = B ) )
19 18 anbi2d
 |-  ( x = C -> ( ( ph /\ x = B ) <-> ( ph /\ C = B ) ) )
20 19 rexbidv
 |-  ( x = C -> ( E. y e. A ( ph /\ x = B ) <-> E. y e. A ( ph /\ C = B ) ) )
21 20 spcegv
 |-  ( C e. _V -> ( E. y e. A ( ph /\ C = B ) -> E. x E. y e. A ( ph /\ x = B ) ) )
22 16 21 syl
 |-  ( D e. A -> ( E. y e. A ( ph /\ C = B ) -> E. x E. y e. A ( ph /\ x = B ) ) )
23 22 adantr
 |-  ( ( D e. A /\ ps ) -> ( E. y e. A ( ph /\ C = B ) -> E. x E. y e. A ( ph /\ x = B ) ) )
24 11 23 mpd
 |-  ( ( D e. A /\ ps ) -> E. x E. y e. A ( ph /\ x = B ) )
25 24 adantl
 |-  ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> E. x E. y e. A ( ph /\ x = B ) )
26 r19.29
 |-  ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ E. y e. A ( ph /\ x = B ) ) -> E. y e. A ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( ph /\ x = B ) ) )
27 r19.29
 |-  ( ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ E. z e. A ( ch /\ w = F ) ) -> E. z e. A ( ( ( ph /\ ch ) -> B = F ) /\ ( ch /\ w = F ) ) )
28 an4
 |-  ( ( ( ph /\ x = B ) /\ ( ch /\ w = F ) ) <-> ( ( ph /\ ch ) /\ ( x = B /\ w = F ) ) )
29 pm3.35
 |-  ( ( ( ph /\ ch ) /\ ( ( ph /\ ch ) -> B = F ) ) -> B = F )
30 eqeq12
 |-  ( ( x = B /\ w = F ) -> ( x = w <-> B = F ) )
31 29 30 syl5ibrcom
 |-  ( ( ( ph /\ ch ) /\ ( ( ph /\ ch ) -> B = F ) ) -> ( ( x = B /\ w = F ) -> x = w ) )
32 31 ancoms
 |-  ( ( ( ( ph /\ ch ) -> B = F ) /\ ( ph /\ ch ) ) -> ( ( x = B /\ w = F ) -> x = w ) )
33 32 expimpd
 |-  ( ( ( ph /\ ch ) -> B = F ) -> ( ( ( ph /\ ch ) /\ ( x = B /\ w = F ) ) -> x = w ) )
34 28 33 syl5bi
 |-  ( ( ( ph /\ ch ) -> B = F ) -> ( ( ( ph /\ x = B ) /\ ( ch /\ w = F ) ) -> x = w ) )
35 34 ancomsd
 |-  ( ( ( ph /\ ch ) -> B = F ) -> ( ( ( ch /\ w = F ) /\ ( ph /\ x = B ) ) -> x = w ) )
36 35 expdimp
 |-  ( ( ( ( ph /\ ch ) -> B = F ) /\ ( ch /\ w = F ) ) -> ( ( ph /\ x = B ) -> x = w ) )
37 36 rexlimivw
 |-  ( E. z e. A ( ( ( ph /\ ch ) -> B = F ) /\ ( ch /\ w = F ) ) -> ( ( ph /\ x = B ) -> x = w ) )
38 37 imp
 |-  ( ( E. z e. A ( ( ( ph /\ ch ) -> B = F ) /\ ( ch /\ w = F ) ) /\ ( ph /\ x = B ) ) -> x = w )
39 27 38 sylan
 |-  ( ( ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ E. z e. A ( ch /\ w = F ) ) /\ ( ph /\ x = B ) ) -> x = w )
40 39 an32s
 |-  ( ( ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( ph /\ x = B ) ) /\ E. z e. A ( ch /\ w = F ) ) -> x = w )
41 40 ex
 |-  ( ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( ph /\ x = B ) ) -> ( E. z e. A ( ch /\ w = F ) -> x = w ) )
42 41 rexlimivw
 |-  ( E. y e. A ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( ph /\ x = B ) ) -> ( E. z e. A ( ch /\ w = F ) -> x = w ) )
43 26 42 syl
 |-  ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ E. y e. A ( ph /\ x = B ) ) -> ( E. z e. A ( ch /\ w = F ) -> x = w ) )
44 43 expimpd
 |-  ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) -> ( ( E. y e. A ( ph /\ x = B ) /\ E. z e. A ( ch /\ w = F ) ) -> x = w ) )
45 44 adantr
 |-  ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> ( ( E. y e. A ( ph /\ x = B ) /\ E. z e. A ( ch /\ w = F ) ) -> x = w ) )
46 45 alrimivv
 |-  ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> A. x A. w ( ( E. y e. A ( ph /\ x = B ) /\ E. z e. A ( ch /\ w = F ) ) -> x = w ) )
47 eqeq1
 |-  ( x = w -> ( x = B <-> w = B ) )
48 47 anbi2d
 |-  ( x = w -> ( ( ph /\ x = B ) <-> ( ph /\ w = B ) ) )
49 48 rexbidv
 |-  ( x = w -> ( E. y e. A ( ph /\ x = B ) <-> E. y e. A ( ph /\ w = B ) ) )
50 4 eqeq2d
 |-  ( y = z -> ( w = B <-> w = F ) )
51 3 50 anbi12d
 |-  ( y = z -> ( ( ph /\ w = B ) <-> ( ch /\ w = F ) ) )
52 51 cbvrexvw
 |-  ( E. y e. A ( ph /\ w = B ) <-> E. z e. A ( ch /\ w = F ) )
53 49 52 bitrdi
 |-  ( x = w -> ( E. y e. A ( ph /\ x = B ) <-> E. z e. A ( ch /\ w = F ) ) )
54 53 eu4
 |-  ( E! x E. y e. A ( ph /\ x = B ) <-> ( E. x E. y e. A ( ph /\ x = B ) /\ A. x A. w ( ( E. y e. A ( ph /\ x = B ) /\ E. z e. A ( ch /\ w = F ) ) -> x = w ) ) )
55 25 46 54 sylanbrc
 |-  ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> E! x E. y e. A ( ph /\ x = B ) )
56 20 iota2
 |-  ( ( C e. _V /\ E! x E. y e. A ( ph /\ x = B ) ) -> ( E. y e. A ( ph /\ C = B ) <-> ( iota x E. y e. A ( ph /\ x = B ) ) = C ) )
57 17 55 56 syl2anc
 |-  ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> ( E. y e. A ( ph /\ C = B ) <-> ( iota x E. y e. A ( ph /\ x = B ) ) = C ) )
58 12 57 mpbid
 |-  ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> ( iota x E. y e. A ( ph /\ x = B ) ) = C )