Step |
Hyp |
Ref |
Expression |
1 |
|
unirep.1 |
|- ( y = D -> ( ph <-> ps ) ) |
2 |
|
unirep.2 |
|- ( y = D -> B = C ) |
3 |
|
unirep.3 |
|- ( y = z -> ( ph <-> ch ) ) |
4 |
|
unirep.4 |
|- ( y = z -> B = F ) |
5 |
|
unirep.5 |
|- B e. _V |
6 |
|
eqidd |
|- ( ps -> C = C ) |
7 |
6
|
ancli |
|- ( ps -> ( ps /\ C = C ) ) |
8 |
2
|
eqeq2d |
|- ( y = D -> ( C = B <-> C = C ) ) |
9 |
1 8
|
anbi12d |
|- ( y = D -> ( ( ph /\ C = B ) <-> ( ps /\ C = C ) ) ) |
10 |
9
|
rspcev |
|- ( ( D e. A /\ ( ps /\ C = C ) ) -> E. y e. A ( ph /\ C = B ) ) |
11 |
7 10
|
sylan2 |
|- ( ( D e. A /\ ps ) -> E. y e. A ( ph /\ C = B ) ) |
12 |
11
|
adantl |
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> E. y e. A ( ph /\ C = B ) ) |
13 |
|
nfcvd |
|- ( D e. A -> F/_ y C ) |
14 |
13 2
|
csbiegf |
|- ( D e. A -> [_ D / y ]_ B = C ) |
15 |
5
|
csbex |
|- [_ D / y ]_ B e. _V |
16 |
14 15
|
eqeltrrdi |
|- ( D e. A -> C e. _V ) |
17 |
16
|
ad2antrl |
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> C e. _V ) |
18 |
|
eqeq1 |
|- ( x = C -> ( x = B <-> C = B ) ) |
19 |
18
|
anbi2d |
|- ( x = C -> ( ( ph /\ x = B ) <-> ( ph /\ C = B ) ) ) |
20 |
19
|
rexbidv |
|- ( x = C -> ( E. y e. A ( ph /\ x = B ) <-> E. y e. A ( ph /\ C = B ) ) ) |
21 |
20
|
spcegv |
|- ( C e. _V -> ( E. y e. A ( ph /\ C = B ) -> E. x E. y e. A ( ph /\ x = B ) ) ) |
22 |
16 21
|
syl |
|- ( D e. A -> ( E. y e. A ( ph /\ C = B ) -> E. x E. y e. A ( ph /\ x = B ) ) ) |
23 |
22
|
adantr |
|- ( ( D e. A /\ ps ) -> ( E. y e. A ( ph /\ C = B ) -> E. x E. y e. A ( ph /\ x = B ) ) ) |
24 |
11 23
|
mpd |
|- ( ( D e. A /\ ps ) -> E. x E. y e. A ( ph /\ x = B ) ) |
25 |
24
|
adantl |
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> E. x E. y e. A ( ph /\ x = B ) ) |
26 |
|
r19.29 |
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ E. y e. A ( ph /\ x = B ) ) -> E. y e. A ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( ph /\ x = B ) ) ) |
27 |
|
r19.29 |
|- ( ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ E. z e. A ( ch /\ w = F ) ) -> E. z e. A ( ( ( ph /\ ch ) -> B = F ) /\ ( ch /\ w = F ) ) ) |
28 |
|
an4 |
|- ( ( ( ph /\ x = B ) /\ ( ch /\ w = F ) ) <-> ( ( ph /\ ch ) /\ ( x = B /\ w = F ) ) ) |
29 |
|
pm3.35 |
|- ( ( ( ph /\ ch ) /\ ( ( ph /\ ch ) -> B = F ) ) -> B = F ) |
30 |
|
eqeq12 |
|- ( ( x = B /\ w = F ) -> ( x = w <-> B = F ) ) |
31 |
29 30
|
syl5ibrcom |
|- ( ( ( ph /\ ch ) /\ ( ( ph /\ ch ) -> B = F ) ) -> ( ( x = B /\ w = F ) -> x = w ) ) |
32 |
31
|
ancoms |
|- ( ( ( ( ph /\ ch ) -> B = F ) /\ ( ph /\ ch ) ) -> ( ( x = B /\ w = F ) -> x = w ) ) |
33 |
32
|
expimpd |
|- ( ( ( ph /\ ch ) -> B = F ) -> ( ( ( ph /\ ch ) /\ ( x = B /\ w = F ) ) -> x = w ) ) |
34 |
28 33
|
syl5bi |
|- ( ( ( ph /\ ch ) -> B = F ) -> ( ( ( ph /\ x = B ) /\ ( ch /\ w = F ) ) -> x = w ) ) |
35 |
34
|
ancomsd |
|- ( ( ( ph /\ ch ) -> B = F ) -> ( ( ( ch /\ w = F ) /\ ( ph /\ x = B ) ) -> x = w ) ) |
36 |
35
|
expdimp |
|- ( ( ( ( ph /\ ch ) -> B = F ) /\ ( ch /\ w = F ) ) -> ( ( ph /\ x = B ) -> x = w ) ) |
37 |
36
|
rexlimivw |
|- ( E. z e. A ( ( ( ph /\ ch ) -> B = F ) /\ ( ch /\ w = F ) ) -> ( ( ph /\ x = B ) -> x = w ) ) |
38 |
37
|
imp |
|- ( ( E. z e. A ( ( ( ph /\ ch ) -> B = F ) /\ ( ch /\ w = F ) ) /\ ( ph /\ x = B ) ) -> x = w ) |
39 |
27 38
|
sylan |
|- ( ( ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ E. z e. A ( ch /\ w = F ) ) /\ ( ph /\ x = B ) ) -> x = w ) |
40 |
39
|
an32s |
|- ( ( ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( ph /\ x = B ) ) /\ E. z e. A ( ch /\ w = F ) ) -> x = w ) |
41 |
40
|
ex |
|- ( ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( ph /\ x = B ) ) -> ( E. z e. A ( ch /\ w = F ) -> x = w ) ) |
42 |
41
|
rexlimivw |
|- ( E. y e. A ( A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( ph /\ x = B ) ) -> ( E. z e. A ( ch /\ w = F ) -> x = w ) ) |
43 |
26 42
|
syl |
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ E. y e. A ( ph /\ x = B ) ) -> ( E. z e. A ( ch /\ w = F ) -> x = w ) ) |
44 |
43
|
expimpd |
|- ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) -> ( ( E. y e. A ( ph /\ x = B ) /\ E. z e. A ( ch /\ w = F ) ) -> x = w ) ) |
45 |
44
|
adantr |
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> ( ( E. y e. A ( ph /\ x = B ) /\ E. z e. A ( ch /\ w = F ) ) -> x = w ) ) |
46 |
45
|
alrimivv |
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> A. x A. w ( ( E. y e. A ( ph /\ x = B ) /\ E. z e. A ( ch /\ w = F ) ) -> x = w ) ) |
47 |
|
eqeq1 |
|- ( x = w -> ( x = B <-> w = B ) ) |
48 |
47
|
anbi2d |
|- ( x = w -> ( ( ph /\ x = B ) <-> ( ph /\ w = B ) ) ) |
49 |
48
|
rexbidv |
|- ( x = w -> ( E. y e. A ( ph /\ x = B ) <-> E. y e. A ( ph /\ w = B ) ) ) |
50 |
4
|
eqeq2d |
|- ( y = z -> ( w = B <-> w = F ) ) |
51 |
3 50
|
anbi12d |
|- ( y = z -> ( ( ph /\ w = B ) <-> ( ch /\ w = F ) ) ) |
52 |
51
|
cbvrexvw |
|- ( E. y e. A ( ph /\ w = B ) <-> E. z e. A ( ch /\ w = F ) ) |
53 |
49 52
|
bitrdi |
|- ( x = w -> ( E. y e. A ( ph /\ x = B ) <-> E. z e. A ( ch /\ w = F ) ) ) |
54 |
53
|
eu4 |
|- ( E! x E. y e. A ( ph /\ x = B ) <-> ( E. x E. y e. A ( ph /\ x = B ) /\ A. x A. w ( ( E. y e. A ( ph /\ x = B ) /\ E. z e. A ( ch /\ w = F ) ) -> x = w ) ) ) |
55 |
25 46 54
|
sylanbrc |
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> E! x E. y e. A ( ph /\ x = B ) ) |
56 |
20
|
iota2 |
|- ( ( C e. _V /\ E! x E. y e. A ( ph /\ x = B ) ) -> ( E. y e. A ( ph /\ C = B ) <-> ( iota x E. y e. A ( ph /\ x = B ) ) = C ) ) |
57 |
17 55 56
|
syl2anc |
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> ( E. y e. A ( ph /\ C = B ) <-> ( iota x E. y e. A ( ph /\ x = B ) ) = C ) ) |
58 |
12 57
|
mpbid |
|- ( ( A. y e. A A. z e. A ( ( ph /\ ch ) -> B = F ) /\ ( D e. A /\ ps ) ) -> ( iota x E. y e. A ( ph /\ x = B ) ) = C ) |