Metamath Proof Explorer


Theorem unirep

Description: Define a quantity whose definition involves a choice of representative, but which is uniquely determined regardless of the choice. (Contributed by Jeff Madsen, 1-Jun-2011)

Ref Expression
Hypotheses unirep.1 y = D φ ψ
unirep.2 y = D B = C
unirep.3 y = z φ χ
unirep.4 y = z B = F
unirep.5 B V
Assertion unirep y A z A φ χ B = F D A ψ ι x | y A φ x = B = C

Proof

Step Hyp Ref Expression
1 unirep.1 y = D φ ψ
2 unirep.2 y = D B = C
3 unirep.3 y = z φ χ
4 unirep.4 y = z B = F
5 unirep.5 B V
6 eqidd ψ C = C
7 6 ancli ψ ψ C = C
8 2 eqeq2d y = D C = B C = C
9 1 8 anbi12d y = D φ C = B ψ C = C
10 9 rspcev D A ψ C = C y A φ C = B
11 7 10 sylan2 D A ψ y A φ C = B
12 11 adantl y A z A φ χ B = F D A ψ y A φ C = B
13 nfcvd D A _ y C
14 13 2 csbiegf D A D / y B = C
15 5 csbex D / y B V
16 14 15 eqeltrrdi D A C V
17 16 ad2antrl y A z A φ χ B = F D A ψ C V
18 eqeq1 x = C x = B C = B
19 18 anbi2d x = C φ x = B φ C = B
20 19 rexbidv x = C y A φ x = B y A φ C = B
21 20 spcegv C V y A φ C = B x y A φ x = B
22 16 21 syl D A y A φ C = B x y A φ x = B
23 22 adantr D A ψ y A φ C = B x y A φ x = B
24 11 23 mpd D A ψ x y A φ x = B
25 24 adantl y A z A φ χ B = F D A ψ x y A φ x = B
26 r19.29 y A z A φ χ B = F y A φ x = B y A z A φ χ B = F φ x = B
27 r19.29 z A φ χ B = F z A χ w = F z A φ χ B = F χ w = F
28 an4 φ x = B χ w = F φ χ x = B w = F
29 pm3.35 φ χ φ χ B = F B = F
30 eqeq12 x = B w = F x = w B = F
31 29 30 syl5ibrcom φ χ φ χ B = F x = B w = F x = w
32 31 ancoms φ χ B = F φ χ x = B w = F x = w
33 32 expimpd φ χ B = F φ χ x = B w = F x = w
34 28 33 syl5bi φ χ B = F φ x = B χ w = F x = w
35 34 ancomsd φ χ B = F χ w = F φ x = B x = w
36 35 expdimp φ χ B = F χ w = F φ x = B x = w
37 36 rexlimivw z A φ χ B = F χ w = F φ x = B x = w
38 37 imp z A φ χ B = F χ w = F φ x = B x = w
39 27 38 sylan z A φ χ B = F z A χ w = F φ x = B x = w
40 39 an32s z A φ χ B = F φ x = B z A χ w = F x = w
41 40 ex z A φ χ B = F φ x = B z A χ w = F x = w
42 41 rexlimivw y A z A φ χ B = F φ x = B z A χ w = F x = w
43 26 42 syl y A z A φ χ B = F y A φ x = B z A χ w = F x = w
44 43 expimpd y A z A φ χ B = F y A φ x = B z A χ w = F x = w
45 44 adantr y A z A φ χ B = F D A ψ y A φ x = B z A χ w = F x = w
46 45 alrimivv y A z A φ χ B = F D A ψ x w y A φ x = B z A χ w = F x = w
47 eqeq1 x = w x = B w = B
48 47 anbi2d x = w φ x = B φ w = B
49 48 rexbidv x = w y A φ x = B y A φ w = B
50 4 eqeq2d y = z w = B w = F
51 3 50 anbi12d y = z φ w = B χ w = F
52 51 cbvrexvw y A φ w = B z A χ w = F
53 49 52 bitrdi x = w y A φ x = B z A χ w = F
54 53 eu4 ∃! x y A φ x = B x y A φ x = B x w y A φ x = B z A χ w = F x = w
55 25 46 54 sylanbrc y A z A φ χ B = F D A ψ ∃! x y A φ x = B
56 20 iota2 C V ∃! x y A φ x = B y A φ C = B ι x | y A φ x = B = C
57 17 55 56 syl2anc y A z A φ χ B = F D A ψ y A φ C = B ι x | y A φ x = B = C
58 12 57 mpbid y A z A φ χ B = F D A ψ ι x | y A φ x = B = C