| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unirep.1 |
⊢ ( 𝑦 = 𝐷 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
unirep.2 |
⊢ ( 𝑦 = 𝐷 → 𝐵 = 𝐶 ) |
| 3 |
|
unirep.3 |
⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜒 ) ) |
| 4 |
|
unirep.4 |
⊢ ( 𝑦 = 𝑧 → 𝐵 = 𝐹 ) |
| 5 |
|
unirep.5 |
⊢ 𝐵 ∈ V |
| 6 |
|
eqidd |
⊢ ( 𝜓 → 𝐶 = 𝐶 ) |
| 7 |
6
|
ancli |
⊢ ( 𝜓 → ( 𝜓 ∧ 𝐶 = 𝐶 ) ) |
| 8 |
2
|
eqeq2d |
⊢ ( 𝑦 = 𝐷 → ( 𝐶 = 𝐵 ↔ 𝐶 = 𝐶 ) ) |
| 9 |
1 8
|
anbi12d |
⊢ ( 𝑦 = 𝐷 → ( ( 𝜑 ∧ 𝐶 = 𝐵 ) ↔ ( 𝜓 ∧ 𝐶 = 𝐶 ) ) ) |
| 10 |
9
|
rspcev |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ ( 𝜓 ∧ 𝐶 = 𝐶 ) ) → ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ) |
| 11 |
7 10
|
sylan2 |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) → ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ) |
| 13 |
|
nfcvd |
⊢ ( 𝐷 ∈ 𝐴 → Ⅎ 𝑦 𝐶 ) |
| 14 |
13 2
|
csbiegf |
⊢ ( 𝐷 ∈ 𝐴 → ⦋ 𝐷 / 𝑦 ⦌ 𝐵 = 𝐶 ) |
| 15 |
5
|
csbex |
⊢ ⦋ 𝐷 / 𝑦 ⦌ 𝐵 ∈ V |
| 16 |
14 15
|
eqeltrrdi |
⊢ ( 𝐷 ∈ 𝐴 → 𝐶 ∈ V ) |
| 17 |
16
|
ad2antrl |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → 𝐶 ∈ V ) |
| 18 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 = 𝐵 ↔ 𝐶 = 𝐵 ) ) |
| 19 |
18
|
anbi2d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ( 𝜑 ∧ 𝐶 = 𝐵 ) ) ) |
| 20 |
19
|
rexbidv |
⊢ ( 𝑥 = 𝐶 → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ) ) |
| 21 |
20
|
spcegv |
⊢ ( 𝐶 ∈ V → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
| 22 |
16 21
|
syl |
⊢ ( 𝐷 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
| 24 |
11 23
|
mpd |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) |
| 26 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → ∃ 𝑦 ∈ 𝐴 ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
| 27 |
|
r19.29 |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → ∃ 𝑧 ∈ 𝐴 ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ) |
| 28 |
|
an4 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝑥 = 𝐵 ∧ 𝑤 = 𝐹 ) ) ) |
| 29 |
|
pm3.35 |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ) → 𝐵 = 𝐹 ) |
| 30 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑤 = 𝐹 ) → ( 𝑥 = 𝑤 ↔ 𝐵 = 𝐹 ) ) |
| 31 |
29 30
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ) → ( ( 𝑥 = 𝐵 ∧ 𝑤 = 𝐹 ) → 𝑥 = 𝑤 ) ) |
| 32 |
31
|
ancoms |
⊢ ( ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜑 ∧ 𝜒 ) ) → ( ( 𝑥 = 𝐵 ∧ 𝑤 = 𝐹 ) → 𝑥 = 𝑤 ) ) |
| 33 |
32
|
expimpd |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) → ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝑥 = 𝐵 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) |
| 34 |
28 33
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) → ( ( ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) |
| 35 |
34
|
ancomsd |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) → ( ( ( 𝜒 ∧ 𝑤 = 𝐹 ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → 𝑥 = 𝑤 ) ) |
| 36 |
35
|
expdimp |
⊢ ( ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝑤 ) ) |
| 37 |
36
|
rexlimivw |
⊢ ( ∃ 𝑧 ∈ 𝐴 ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝑤 ) ) |
| 38 |
37
|
imp |
⊢ ( ( ∃ 𝑧 ∈ 𝐴 ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → 𝑥 = 𝑤 ) |
| 39 |
27 38
|
sylan |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → 𝑥 = 𝑤 ) |
| 40 |
39
|
an32s |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) |
| 41 |
40
|
ex |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) → 𝑥 = 𝑤 ) ) |
| 42 |
41
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) → 𝑥 = 𝑤 ) ) |
| 43 |
26 42
|
syl |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) → 𝑥 = 𝑤 ) ) |
| 44 |
43
|
expimpd |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) → ( ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ( ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) |
| 46 |
45
|
alrimivv |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ∀ 𝑥 ∀ 𝑤 ( ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) |
| 47 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = 𝐵 ↔ 𝑤 = 𝐵 ) ) |
| 48 |
47
|
anbi2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ( 𝜑 ∧ 𝑤 = 𝐵 ) ) ) |
| 49 |
48
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑤 = 𝐵 ) ) ) |
| 50 |
4
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 = 𝐵 ↔ 𝑤 = 𝐹 ) ) |
| 51 |
3 50
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ∧ 𝑤 = 𝐵 ) ↔ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ) |
| 52 |
51
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑤 = 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) |
| 53 |
49 52
|
bitrdi |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ) |
| 54 |
53
|
eu4 |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ∀ 𝑥 ∀ 𝑤 ( ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) ) |
| 55 |
25 46 54
|
sylanbrc |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) |
| 56 |
20
|
iota2 |
⊢ ( ( 𝐶 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ↔ ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) = 𝐶 ) ) |
| 57 |
17 55 56
|
syl2anc |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ↔ ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) = 𝐶 ) ) |
| 58 |
12 57
|
mpbid |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) = 𝐶 ) |