Step |
Hyp |
Ref |
Expression |
1 |
|
unirep.1 |
⊢ ( 𝑦 = 𝐷 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
unirep.2 |
⊢ ( 𝑦 = 𝐷 → 𝐵 = 𝐶 ) |
3 |
|
unirep.3 |
⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜒 ) ) |
4 |
|
unirep.4 |
⊢ ( 𝑦 = 𝑧 → 𝐵 = 𝐹 ) |
5 |
|
unirep.5 |
⊢ 𝐵 ∈ V |
6 |
|
eqidd |
⊢ ( 𝜓 → 𝐶 = 𝐶 ) |
7 |
6
|
ancli |
⊢ ( 𝜓 → ( 𝜓 ∧ 𝐶 = 𝐶 ) ) |
8 |
2
|
eqeq2d |
⊢ ( 𝑦 = 𝐷 → ( 𝐶 = 𝐵 ↔ 𝐶 = 𝐶 ) ) |
9 |
1 8
|
anbi12d |
⊢ ( 𝑦 = 𝐷 → ( ( 𝜑 ∧ 𝐶 = 𝐵 ) ↔ ( 𝜓 ∧ 𝐶 = 𝐶 ) ) ) |
10 |
9
|
rspcev |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ ( 𝜓 ∧ 𝐶 = 𝐶 ) ) → ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ) |
11 |
7 10
|
sylan2 |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) → ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ) |
12 |
11
|
adantl |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ) |
13 |
|
nfcvd |
⊢ ( 𝐷 ∈ 𝐴 → Ⅎ 𝑦 𝐶 ) |
14 |
13 2
|
csbiegf |
⊢ ( 𝐷 ∈ 𝐴 → ⦋ 𝐷 / 𝑦 ⦌ 𝐵 = 𝐶 ) |
15 |
5
|
csbex |
⊢ ⦋ 𝐷 / 𝑦 ⦌ 𝐵 ∈ V |
16 |
14 15
|
eqeltrrdi |
⊢ ( 𝐷 ∈ 𝐴 → 𝐶 ∈ V ) |
17 |
16
|
ad2antrl |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → 𝐶 ∈ V ) |
18 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 = 𝐵 ↔ 𝐶 = 𝐵 ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ( 𝜑 ∧ 𝐶 = 𝐵 ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝑥 = 𝐶 → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ) ) |
21 |
20
|
spcegv |
⊢ ( 𝐶 ∈ V → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
22 |
16 21
|
syl |
⊢ ( 𝐷 ∈ 𝐴 → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
23 |
22
|
adantr |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
24 |
11 23
|
mpd |
⊢ ( ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) |
25 |
24
|
adantl |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) |
26 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → ∃ 𝑦 ∈ 𝐴 ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) ) |
27 |
|
r19.29 |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → ∃ 𝑧 ∈ 𝐴 ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ) |
28 |
|
an4 |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝑥 = 𝐵 ∧ 𝑤 = 𝐹 ) ) ) |
29 |
|
pm3.35 |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ) → 𝐵 = 𝐹 ) |
30 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝐵 ∧ 𝑤 = 𝐹 ) → ( 𝑥 = 𝑤 ↔ 𝐵 = 𝐹 ) ) |
31 |
29 30
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ) → ( ( 𝑥 = 𝐵 ∧ 𝑤 = 𝐹 ) → 𝑥 = 𝑤 ) ) |
32 |
31
|
ancoms |
⊢ ( ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜑 ∧ 𝜒 ) ) → ( ( 𝑥 = 𝐵 ∧ 𝑤 = 𝐹 ) → 𝑥 = 𝑤 ) ) |
33 |
32
|
expimpd |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) → ( ( ( 𝜑 ∧ 𝜒 ) ∧ ( 𝑥 = 𝐵 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) |
34 |
28 33
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) → ( ( ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) |
35 |
34
|
ancomsd |
⊢ ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) → ( ( ( 𝜒 ∧ 𝑤 = 𝐹 ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → 𝑥 = 𝑤 ) ) |
36 |
35
|
expdimp |
⊢ ( ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝑤 ) ) |
37 |
36
|
rexlimivw |
⊢ ( ∃ 𝑧 ∈ 𝐴 ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝑤 ) ) |
38 |
37
|
imp |
⊢ ( ( ∃ 𝑧 ∈ 𝐴 ( ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → 𝑥 = 𝑤 ) |
39 |
27 38
|
sylan |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → 𝑥 = 𝑤 ) |
40 |
39
|
an32s |
⊢ ( ( ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) |
41 |
40
|
ex |
⊢ ( ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) → 𝑥 = 𝑤 ) ) |
42 |
41
|
rexlimivw |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) → 𝑥 = 𝑤 ) ) |
43 |
26 42
|
syl |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) → 𝑥 = 𝑤 ) ) |
44 |
43
|
expimpd |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) → ( ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) |
45 |
44
|
adantr |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ( ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) |
46 |
45
|
alrimivv |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ∀ 𝑥 ∀ 𝑤 ( ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) |
47 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = 𝐵 ↔ 𝑤 = 𝐵 ) ) |
48 |
47
|
anbi2d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ( 𝜑 ∧ 𝑤 = 𝐵 ) ) ) |
49 |
48
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑤 = 𝐵 ) ) ) |
50 |
4
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 = 𝐵 ↔ 𝑤 = 𝐹 ) ) |
51 |
3 50
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ∧ 𝑤 = 𝐵 ) ↔ ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ) |
52 |
51
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑤 = 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) |
53 |
49 52
|
bitrdi |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) ) |
54 |
53
|
eu4 |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ∀ 𝑥 ∀ 𝑤 ( ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ∧ ∃ 𝑧 ∈ 𝐴 ( 𝜒 ∧ 𝑤 = 𝐹 ) ) → 𝑥 = 𝑤 ) ) ) |
55 |
25 46 54
|
sylanbrc |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) |
56 |
20
|
iota2 |
⊢ ( ( 𝐶 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ↔ ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) = 𝐶 ) ) |
57 |
17 55 56
|
syl2anc |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ( ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝐶 = 𝐵 ) ↔ ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) = 𝐶 ) ) |
58 |
12 57
|
mpbid |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝜑 ∧ 𝜒 ) → 𝐵 = 𝐹 ) ∧ ( 𝐷 ∈ 𝐴 ∧ 𝜓 ) ) → ( ℩ 𝑥 ∃ 𝑦 ∈ 𝐴 ( 𝜑 ∧ 𝑥 = 𝐵 ) ) = 𝐶 ) |