| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unirep.1 | ⊢ ( 𝑦  =  𝐷  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | unirep.2 | ⊢ ( 𝑦  =  𝐷  →  𝐵  =  𝐶 ) | 
						
							| 3 |  | unirep.3 | ⊢ ( 𝑦  =  𝑧  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 4 |  | unirep.4 | ⊢ ( 𝑦  =  𝑧  →  𝐵  =  𝐹 ) | 
						
							| 5 |  | unirep.5 | ⊢ 𝐵  ∈  V | 
						
							| 6 |  | eqidd | ⊢ ( 𝜓  →  𝐶  =  𝐶 ) | 
						
							| 7 | 6 | ancli | ⊢ ( 𝜓  →  ( 𝜓  ∧  𝐶  =  𝐶 ) ) | 
						
							| 8 | 2 | eqeq2d | ⊢ ( 𝑦  =  𝐷  →  ( 𝐶  =  𝐵  ↔  𝐶  =  𝐶 ) ) | 
						
							| 9 | 1 8 | anbi12d | ⊢ ( 𝑦  =  𝐷  →  ( ( 𝜑  ∧  𝐶  =  𝐵 )  ↔  ( 𝜓  ∧  𝐶  =  𝐶 ) ) ) | 
						
							| 10 | 9 | rspcev | ⊢ ( ( 𝐷  ∈  𝐴  ∧  ( 𝜓  ∧  𝐶  =  𝐶 ) )  →  ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝐶  =  𝐵 ) ) | 
						
							| 11 | 7 10 | sylan2 | ⊢ ( ( 𝐷  ∈  𝐴  ∧  𝜓 )  →  ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝐶  =  𝐵 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝐷  ∈  𝐴  ∧  𝜓 ) )  →  ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝐶  =  𝐵 ) ) | 
						
							| 13 |  | nfcvd | ⊢ ( 𝐷  ∈  𝐴  →  Ⅎ 𝑦 𝐶 ) | 
						
							| 14 | 13 2 | csbiegf | ⊢ ( 𝐷  ∈  𝐴  →  ⦋ 𝐷  /  𝑦 ⦌ 𝐵  =  𝐶 ) | 
						
							| 15 | 5 | csbex | ⊢ ⦋ 𝐷  /  𝑦 ⦌ 𝐵  ∈  V | 
						
							| 16 | 14 15 | eqeltrrdi | ⊢ ( 𝐷  ∈  𝐴  →  𝐶  ∈  V ) | 
						
							| 17 | 16 | ad2antrl | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝐷  ∈  𝐴  ∧  𝜓 ) )  →  𝐶  ∈  V ) | 
						
							| 18 |  | eqeq1 | ⊢ ( 𝑥  =  𝐶  →  ( 𝑥  =  𝐵  ↔  𝐶  =  𝐵 ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝜑  ∧  𝑥  =  𝐵 )  ↔  ( 𝜑  ∧  𝐶  =  𝐵 ) ) ) | 
						
							| 20 | 19 | rexbidv | ⊢ ( 𝑥  =  𝐶  →  ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 )  ↔  ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝐶  =  𝐵 ) ) ) | 
						
							| 21 | 20 | spcegv | ⊢ ( 𝐶  ∈  V  →  ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝐶  =  𝐵 )  →  ∃ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) ) ) | 
						
							| 22 | 16 21 | syl | ⊢ ( 𝐷  ∈  𝐴  →  ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝐶  =  𝐵 )  →  ∃ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝐷  ∈  𝐴  ∧  𝜓 )  →  ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝐶  =  𝐵 )  →  ∃ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) ) ) | 
						
							| 24 | 11 23 | mpd | ⊢ ( ( 𝐷  ∈  𝐴  ∧  𝜓 )  →  ∃ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝐷  ∈  𝐴  ∧  𝜓 ) )  →  ∃ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) ) | 
						
							| 26 |  | r19.29 | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) )  →  ∃ 𝑦  ∈  𝐴 ( ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝜑  ∧  𝑥  =  𝐵 ) ) ) | 
						
							| 27 |  | r19.29 | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 ) )  →  ∃ 𝑧  ∈  𝐴 ( ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝜒  ∧  𝑤  =  𝐹 ) ) ) | 
						
							| 28 |  | an4 | ⊢ ( ( ( 𝜑  ∧  𝑥  =  𝐵 )  ∧  ( 𝜒  ∧  𝑤  =  𝐹 ) )  ↔  ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝑥  =  𝐵  ∧  𝑤  =  𝐹 ) ) ) | 
						
							| 29 |  | pm3.35 | ⊢ ( ( ( 𝜑  ∧  𝜒 )  ∧  ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 ) )  →  𝐵  =  𝐹 ) | 
						
							| 30 |  | eqeq12 | ⊢ ( ( 𝑥  =  𝐵  ∧  𝑤  =  𝐹 )  →  ( 𝑥  =  𝑤  ↔  𝐵  =  𝐹 ) ) | 
						
							| 31 | 29 30 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  𝜒 )  ∧  ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 ) )  →  ( ( 𝑥  =  𝐵  ∧  𝑤  =  𝐹 )  →  𝑥  =  𝑤 ) ) | 
						
							| 32 | 31 | ancoms | ⊢ ( ( ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝜑  ∧  𝜒 ) )  →  ( ( 𝑥  =  𝐵  ∧  𝑤  =  𝐹 )  →  𝑥  =  𝑤 ) ) | 
						
							| 33 | 32 | expimpd | ⊢ ( ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  →  ( ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝑥  =  𝐵  ∧  𝑤  =  𝐹 ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 34 | 28 33 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  →  ( ( ( 𝜑  ∧  𝑥  =  𝐵 )  ∧  ( 𝜒  ∧  𝑤  =  𝐹 ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 35 | 34 | ancomsd | ⊢ ( ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  →  ( ( ( 𝜒  ∧  𝑤  =  𝐹 )  ∧  ( 𝜑  ∧  𝑥  =  𝐵 ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 36 | 35 | expdimp | ⊢ ( ( ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝜒  ∧  𝑤  =  𝐹 ) )  →  ( ( 𝜑  ∧  𝑥  =  𝐵 )  →  𝑥  =  𝑤 ) ) | 
						
							| 37 | 36 | rexlimivw | ⊢ ( ∃ 𝑧  ∈  𝐴 ( ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝜒  ∧  𝑤  =  𝐹 ) )  →  ( ( 𝜑  ∧  𝑥  =  𝐵 )  →  𝑥  =  𝑤 ) ) | 
						
							| 38 | 37 | imp | ⊢ ( ( ∃ 𝑧  ∈  𝐴 ( ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝜒  ∧  𝑤  =  𝐹 ) )  ∧  ( 𝜑  ∧  𝑥  =  𝐵 ) )  →  𝑥  =  𝑤 ) | 
						
							| 39 | 27 38 | sylan | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 ) )  ∧  ( 𝜑  ∧  𝑥  =  𝐵 ) )  →  𝑥  =  𝑤 ) | 
						
							| 40 | 39 | an32s | ⊢ ( ( ( ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝜑  ∧  𝑥  =  𝐵 ) )  ∧  ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 ) )  →  𝑥  =  𝑤 ) | 
						
							| 41 | 40 | ex | ⊢ ( ( ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝜑  ∧  𝑥  =  𝐵 ) )  →  ( ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 )  →  𝑥  =  𝑤 ) ) | 
						
							| 42 | 41 | rexlimivw | ⊢ ( ∃ 𝑦  ∈  𝐴 ( ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝜑  ∧  𝑥  =  𝐵 ) )  →  ( ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 )  →  𝑥  =  𝑤 ) ) | 
						
							| 43 | 26 42 | syl | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) )  →  ( ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 )  →  𝑥  =  𝑤 ) ) | 
						
							| 44 | 43 | expimpd | ⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  →  ( ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 )  ∧  ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝐷  ∈  𝐴  ∧  𝜓 ) )  →  ( ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 )  ∧  ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 46 | 45 | alrimivv | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝐷  ∈  𝐴  ∧  𝜓 ) )  →  ∀ 𝑥 ∀ 𝑤 ( ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 )  ∧  ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 ) )  →  𝑥  =  𝑤 ) ) | 
						
							| 47 |  | eqeq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  =  𝐵  ↔  𝑤  =  𝐵 ) ) | 
						
							| 48 | 47 | anbi2d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝜑  ∧  𝑥  =  𝐵 )  ↔  ( 𝜑  ∧  𝑤  =  𝐵 ) ) ) | 
						
							| 49 | 48 | rexbidv | ⊢ ( 𝑥  =  𝑤  →  ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 )  ↔  ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑤  =  𝐵 ) ) ) | 
						
							| 50 | 4 | eqeq2d | ⊢ ( 𝑦  =  𝑧  →  ( 𝑤  =  𝐵  ↔  𝑤  =  𝐹 ) ) | 
						
							| 51 | 3 50 | anbi12d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝜑  ∧  𝑤  =  𝐵 )  ↔  ( 𝜒  ∧  𝑤  =  𝐹 ) ) ) | 
						
							| 52 | 51 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑤  =  𝐵 )  ↔  ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 ) ) | 
						
							| 53 | 49 52 | bitrdi | ⊢ ( 𝑥  =  𝑤  →  ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 )  ↔  ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 ) ) ) | 
						
							| 54 | 53 | eu4 | ⊢ ( ∃! 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 )  ↔  ( ∃ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 )  ∧  ∀ 𝑥 ∀ 𝑤 ( ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 )  ∧  ∃ 𝑧  ∈  𝐴 ( 𝜒  ∧  𝑤  =  𝐹 ) )  →  𝑥  =  𝑤 ) ) ) | 
						
							| 55 | 25 46 54 | sylanbrc | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝐷  ∈  𝐴  ∧  𝜓 ) )  →  ∃! 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) ) | 
						
							| 56 | 20 | iota2 | ⊢ ( ( 𝐶  ∈  V  ∧  ∃! 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) )  →  ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝐶  =  𝐵 )  ↔  ( ℩ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) )  =  𝐶 ) ) | 
						
							| 57 | 17 55 56 | syl2anc | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝐷  ∈  𝐴  ∧  𝜓 ) )  →  ( ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝐶  =  𝐵 )  ↔  ( ℩ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) )  =  𝐶 ) ) | 
						
							| 58 | 12 57 | mpbid | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝜑  ∧  𝜒 )  →  𝐵  =  𝐹 )  ∧  ( 𝐷  ∈  𝐴  ∧  𝜓 ) )  →  ( ℩ 𝑥 ∃ 𝑦  ∈  𝐴 ( 𝜑  ∧  𝑥  =  𝐵 ) )  =  𝐶 ) |