| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> G e. USGraph ) |
| 2 |
1
|
anim2i |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( F ( Walks ` G ) P /\ G e. USGraph ) ) |
| 3 |
2
|
ancomd |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( G e. USGraph /\ F ( Walks ` G ) P ) ) |
| 4 |
|
3simpc |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 5 |
4
|
adantl |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 6 |
|
usgr2wlkneq |
|- ( ( ( G e. USGraph /\ F ( Walks ` G ) P ) /\ ( ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 7 |
3 5 6
|
syl2anc |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) ) |
| 8 |
|
simpl |
|- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) |
| 9 |
|
fvex |
|- ( P ` 0 ) e. _V |
| 10 |
|
fvex |
|- ( P ` 1 ) e. _V |
| 11 |
|
fvex |
|- ( P ` 2 ) e. _V |
| 12 |
9 10 11
|
3pm3.2i |
|- ( ( P ` 0 ) e. _V /\ ( P ` 1 ) e. _V /\ ( P ` 2 ) e. _V ) |
| 13 |
8 12
|
jctil |
|- ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) /\ ( F ` 0 ) =/= ( F ` 1 ) ) -> ( ( ( P ` 0 ) e. _V /\ ( P ` 1 ) e. _V /\ ( P ` 2 ) e. _V ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) ) |
| 14 |
|
funcnvs3 |
|- ( ( ( ( P ` 0 ) e. _V /\ ( P ` 1 ) e. _V /\ ( P ` 2 ) e. _V ) /\ ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 2 ) ) ) -> Fun `' <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) |
| 15 |
7 13 14
|
3syl |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) |
| 16 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 17 |
16
|
wlkpwrd |
|- ( F ( Walks ` G ) P -> P e. Word ( Vtx ` G ) ) |
| 18 |
|
wlklenvp1 |
|- ( F ( Walks ` G ) P -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
| 19 |
|
oveq1 |
|- ( ( # ` F ) = 2 -> ( ( # ` F ) + 1 ) = ( 2 + 1 ) ) |
| 20 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 21 |
19 20
|
eqtrdi |
|- ( ( # ` F ) = 2 -> ( ( # ` F ) + 1 ) = 3 ) |
| 22 |
21
|
3ad2ant2 |
|- ( ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> ( ( # ` F ) + 1 ) = 3 ) |
| 23 |
18 22
|
sylan9eq |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( # ` P ) = 3 ) |
| 24 |
|
wrdlen3s3 |
|- ( ( P e. Word ( Vtx ` G ) /\ ( # ` P ) = 3 ) -> P = <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) |
| 25 |
17 23 24
|
syl2an2r |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> P = <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) |
| 26 |
25
|
cnveqd |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> `' P = `' <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) |
| 27 |
26
|
funeqd |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> ( Fun `' P <-> Fun `' <" ( P ` 0 ) ( P ` 1 ) ( P ` 2 ) "> ) ) |
| 28 |
15 27
|
mpbird |
|- ( ( F ( Walks ` G ) P /\ ( G e. USGraph /\ ( # ` F ) = 2 /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) -> Fun `' P ) |