Metamath Proof Explorer


Theorem usgr2wlkspthlem2

Description: Lemma 2 for usgr2wlkspth . (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 27-Jan-2021)

Ref Expression
Assertion usgr2wlkspthlem2 FWalksGPGUSGraphF=2P0PFFunP-1

Proof

Step Hyp Ref Expression
1 simp1 GUSGraphF=2P0PFGUSGraph
2 1 anim2i FWalksGPGUSGraphF=2P0PFFWalksGPGUSGraph
3 2 ancomd FWalksGPGUSGraphF=2P0PFGUSGraphFWalksGP
4 3simpc GUSGraphF=2P0PFF=2P0PF
5 4 adantl FWalksGPGUSGraphF=2P0PFF=2P0PF
6 usgr2wlkneq GUSGraphFWalksGPF=2P0PFP0P1P0P2P1P2F0F1
7 3 5 6 syl2anc FWalksGPGUSGraphF=2P0PFP0P1P0P2P1P2F0F1
8 simpl P0P1P0P2P1P2F0F1P0P1P0P2P1P2
9 fvex P0V
10 fvex P1V
11 fvex P2V
12 9 10 11 3pm3.2i P0VP1VP2V
13 8 12 jctil P0P1P0P2P1P2F0F1P0VP1VP2VP0P1P0P2P1P2
14 funcnvs3 P0VP1VP2VP0P1P0P2P1P2Fun⟨“P0P1P2”⟩-1
15 7 13 14 3syl FWalksGPGUSGraphF=2P0PFFun⟨“P0P1P2”⟩-1
16 eqid VtxG=VtxG
17 16 wlkpwrd FWalksGPPWordVtxG
18 wlklenvp1 FWalksGPP=F+1
19 oveq1 F=2F+1=2+1
20 2p1e3 2+1=3
21 19 20 eqtrdi F=2F+1=3
22 21 3ad2ant2 GUSGraphF=2P0PFF+1=3
23 18 22 sylan9eq FWalksGPGUSGraphF=2P0PFP=3
24 wrdlen3s3 PWordVtxGP=3P=⟨“P0P1P2”⟩
25 17 23 24 syl2an2r FWalksGPGUSGraphF=2P0PFP=⟨“P0P1P2”⟩
26 25 cnveqd FWalksGPGUSGraphF=2P0PFP-1=⟨“P0P1P2”⟩-1
27 26 funeqd FWalksGPGUSGraphF=2P0PFFunP-1Fun⟨“P0P1P2”⟩-1
28 15 27 mpbird FWalksGPGUSGraphF=2P0PFFunP-1