| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrupgr |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
2 3
|
upgriswlk |
|
| 5 |
1 4
|
syl |
|
| 6 |
|
2wlklem |
|
| 7 |
|
simplll |
|
| 8 |
|
fvex |
|
| 9 |
3
|
usgrnloopv |
|
| 10 |
7 8 9
|
sylancl |
|
| 11 |
|
fvex |
|
| 12 |
3
|
usgrnloopv |
|
| 13 |
7 11 12
|
sylancl |
|
| 14 |
10 13
|
anim12d |
|
| 15 |
|
fveqeq2 |
|
| 16 |
|
eqtr2 |
|
| 17 |
|
prcom |
|
| 18 |
17
|
eqeq2i |
|
| 19 |
|
fvex |
|
| 20 |
8 19
|
preqr1 |
|
| 21 |
18 20
|
sylbi |
|
| 22 |
16 21
|
syl |
|
| 23 |
22
|
ex |
|
| 24 |
15 23
|
biimtrdi |
|
| 25 |
24
|
impd |
|
| 26 |
25
|
com12 |
|
| 27 |
26
|
necon3d |
|
| 28 |
27
|
com12 |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpl |
|
| 31 |
30
|
adantl |
|
| 32 |
|
simpl |
|
| 33 |
|
simprr |
|
| 34 |
31 32 33
|
3jca |
|
| 35 |
29 34
|
jctild |
|
| 36 |
35
|
ex |
|
| 37 |
36
|
com23 |
|
| 38 |
37
|
adantl |
|
| 39 |
38
|
adantr |
|
| 40 |
14 39
|
mpdd |
|
| 41 |
6 40
|
biimtrid |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
com23 |
|
| 44 |
43
|
ex |
|
| 45 |
|
fveq2 |
|
| 46 |
45
|
neeq2d |
|
| 47 |
|
oveq2 |
|
| 48 |
|
fzo0to2pr |
|
| 49 |
47 48
|
eqtrdi |
|
| 50 |
49
|
raleqdv |
|
| 51 |
|
oveq2 |
|
| 52 |
51
|
feq2d |
|
| 53 |
52
|
imbi1d |
|
| 54 |
50 53
|
imbi12d |
|
| 55 |
46 54
|
imbi12d |
|
| 56 |
44 55
|
syl5ibrcom |
|
| 57 |
56
|
impd |
|
| 58 |
57
|
com24 |
|
| 59 |
58
|
ex |
|
| 60 |
59
|
3impd |
|
| 61 |
5 60
|
sylbid |
|
| 62 |
61
|
imp31 |
|