Metamath Proof Explorer


Theorem usgr2wlkneq

Description: The vertices and edges are pairwise different in a walk of length 2 in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 26-Jan-2021)

Ref Expression
Assertion usgr2wlkneq G USGraph F Walks G P F = 2 P 0 P F P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1

Proof

Step Hyp Ref Expression
1 usgrupgr G USGraph G UPGraph
2 eqid Vtx G = Vtx G
3 eqid iEdg G = iEdg G
4 2 3 upgriswlk G UPGraph F Walks G P F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F iEdg G F k = P k P k + 1
5 1 4 syl G USGraph F Walks G P F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F iEdg G F k = P k P k + 1
6 2wlklem k 0 1 iEdg G F k = P k P k + 1 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2
7 simplll G USGraph F Word dom iEdg G P 0 P 2 P : 0 2 Vtx G G USGraph
8 fvex P 0 V
9 3 usgrnloopv G USGraph P 0 V iEdg G F 0 = P 0 P 1 P 0 P 1
10 7 8 9 sylancl G USGraph F Word dom iEdg G P 0 P 2 P : 0 2 Vtx G iEdg G F 0 = P 0 P 1 P 0 P 1
11 fvex P 1 V
12 3 usgrnloopv G USGraph P 1 V iEdg G F 1 = P 1 P 2 P 1 P 2
13 7 11 12 sylancl G USGraph F Word dom iEdg G P 0 P 2 P : 0 2 Vtx G iEdg G F 1 = P 1 P 2 P 1 P 2
14 10 13 anim12d G USGraph F Word dom iEdg G P 0 P 2 P : 0 2 Vtx G iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 1 P 1 P 2
15 fveqeq2 F 0 = F 1 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 0 P 1
16 eqtr2 iEdg G F 1 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 1 = P 1 P 2
17 prcom P 1 P 2 = P 2 P 1
18 17 eqeq2i P 0 P 1 = P 1 P 2 P 0 P 1 = P 2 P 1
19 fvex P 2 V
20 8 19 preqr1 P 0 P 1 = P 2 P 1 P 0 = P 2
21 18 20 sylbi P 0 P 1 = P 1 P 2 P 0 = P 2
22 16 21 syl iEdg G F 1 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 = P 2
23 22 ex iEdg G F 1 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 = P 2
24 15 23 syl6bi F 0 = F 1 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 = P 2
25 24 impd F 0 = F 1 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 = P 2
26 25 com12 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 F 0 = F 1 P 0 = P 2
27 26 necon3d iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 2 F 0 F 1
28 27 com12 P 0 P 2 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 F 0 F 1
29 28 adantr P 0 P 2 P 0 P 1 P 1 P 2 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 F 0 F 1
30 simpl P 0 P 1 P 1 P 2 P 0 P 1
31 30 adantl P 0 P 2 P 0 P 1 P 1 P 2 P 0 P 1
32 simpl P 0 P 2 P 0 P 1 P 1 P 2 P 0 P 2
33 simprr P 0 P 2 P 0 P 1 P 1 P 2 P 1 P 2
34 31 32 33 3jca P 0 P 2 P 0 P 1 P 1 P 2 P 0 P 1 P 0 P 2 P 1 P 2
35 29 34 jctild P 0 P 2 P 0 P 1 P 1 P 2 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
36 35 ex P 0 P 2 P 0 P 1 P 1 P 2 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
37 36 com23 P 0 P 2 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 1 P 1 P 2 P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
38 37 adantl G USGraph F Word dom iEdg G P 0 P 2 iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 1 P 1 P 2 P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
39 38 adantr G USGraph F Word dom iEdg G P 0 P 2 P : 0 2 Vtx G iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 1 P 1 P 2 P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
40 14 39 mpdd G USGraph F Word dom iEdg G P 0 P 2 P : 0 2 Vtx G iEdg G F 0 = P 0 P 1 iEdg G F 1 = P 1 P 2 P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
41 6 40 syl5bi G USGraph F Word dom iEdg G P 0 P 2 P : 0 2 Vtx G k 0 1 iEdg G F k = P k P k + 1 P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
42 41 ex G USGraph F Word dom iEdg G P 0 P 2 P : 0 2 Vtx G k 0 1 iEdg G F k = P k P k + 1 P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
43 42 com23 G USGraph F Word dom iEdg G P 0 P 2 k 0 1 iEdg G F k = P k P k + 1 P : 0 2 Vtx G P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
44 43 ex G USGraph F Word dom iEdg G P 0 P 2 k 0 1 iEdg G F k = P k P k + 1 P : 0 2 Vtx G P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
45 fveq2 F = 2 P F = P 2
46 45 neeq2d F = 2 P 0 P F P 0 P 2
47 oveq2 F = 2 0 ..^ F = 0 ..^ 2
48 fzo0to2pr 0 ..^ 2 = 0 1
49 47 48 eqtrdi F = 2 0 ..^ F = 0 1
50 49 raleqdv F = 2 k 0 ..^ F iEdg G F k = P k P k + 1 k 0 1 iEdg G F k = P k P k + 1
51 oveq2 F = 2 0 F = 0 2
52 51 feq2d F = 2 P : 0 F Vtx G P : 0 2 Vtx G
53 52 imbi1d F = 2 P : 0 F Vtx G P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1 P : 0 2 Vtx G P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
54 50 53 imbi12d F = 2 k 0 ..^ F iEdg G F k = P k P k + 1 P : 0 F Vtx G P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1 k 0 1 iEdg G F k = P k P k + 1 P : 0 2 Vtx G P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
55 46 54 imbi12d F = 2 P 0 P F k 0 ..^ F iEdg G F k = P k P k + 1 P : 0 F Vtx G P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1 P 0 P 2 k 0 1 iEdg G F k = P k P k + 1 P : 0 2 Vtx G P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
56 44 55 syl5ibrcom G USGraph F Word dom iEdg G F = 2 P 0 P F k 0 ..^ F iEdg G F k = P k P k + 1 P : 0 F Vtx G P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
57 56 impd G USGraph F Word dom iEdg G F = 2 P 0 P F k 0 ..^ F iEdg G F k = P k P k + 1 P : 0 F Vtx G P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
58 57 com24 G USGraph F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F iEdg G F k = P k P k + 1 F = 2 P 0 P F P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
59 58 ex G USGraph F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F iEdg G F k = P k P k + 1 F = 2 P 0 P F P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
60 59 3impd G USGraph F Word dom iEdg G P : 0 F Vtx G k 0 ..^ F iEdg G F k = P k P k + 1 F = 2 P 0 P F P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
61 5 60 sylbid G USGraph F Walks G P F = 2 P 0 P F P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
62 61 imp31 G USGraph F Walks G P F = 2 P 0 P F P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1