Metamath Proof Explorer


Theorem usgr2wlkspthlem1

Description: Lemma 1 for usgr2wlkspth . (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 26-Jan-2021)

Ref Expression
Assertion usgr2wlkspthlem1 F Walks G P G USGraph F = 2 P 0 P F Fun F -1

Proof

Step Hyp Ref Expression
1 simp1 G USGraph F = 2 P 0 P F G USGraph
2 1 anim2i F Walks G P G USGraph F = 2 P 0 P F F Walks G P G USGraph
3 2 ancomd F Walks G P G USGraph F = 2 P 0 P F G USGraph F Walks G P
4 3simpc G USGraph F = 2 P 0 P F F = 2 P 0 P F
5 4 adantl F Walks G P G USGraph F = 2 P 0 P F F = 2 P 0 P F
6 usgr2wlkneq G USGraph F Walks G P F = 2 P 0 P F P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
7 3 5 6 syl2anc F Walks G P G USGraph F = 2 P 0 P F P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1
8 fvexd P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1 F 0 V
9 fvexd P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1 F 1 V
10 simpr P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1 F 0 F 1
11 8 9 10 3jca P 0 P 1 P 0 P 2 P 1 P 2 F 0 F 1 F 0 V F 1 V F 0 F 1
12 funcnvs2 F 0 V F 1 V F 0 F 1 Fun ⟨“ F 0 F 1 ”⟩ -1
13 7 11 12 3syl F Walks G P G USGraph F = 2 P 0 P F Fun ⟨“ F 0 F 1 ”⟩ -1
14 eqid iEdg G = iEdg G
15 14 wlkf F Walks G P F Word dom iEdg G
16 simp2 G USGraph F = 2 P 0 P F F = 2
17 wrdlen2s2 F Word dom iEdg G F = 2 F = ⟨“ F 0 F 1 ”⟩
18 15 16 17 syl2an F Walks G P G USGraph F = 2 P 0 P F F = ⟨“ F 0 F 1 ”⟩
19 18 cnveqd F Walks G P G USGraph F = 2 P 0 P F F -1 = ⟨“ F 0 F 1 ”⟩ -1
20 19 funeqd F Walks G P G USGraph F = 2 P 0 P F Fun F -1 Fun ⟨“ F 0 F 1 ”⟩ -1
21 13 20 mpbird F Walks G P G USGraph F = 2 P 0 P F Fun F -1