Metamath Proof Explorer


Theorem usgr2wlkspthlem1

Description: Lemma 1 for usgr2wlkspth . (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 26-Jan-2021)

Ref Expression
Assertion usgr2wlkspthlem1 FWalksGPGUSGraphF=2P0PFFunF-1

Proof

Step Hyp Ref Expression
1 simp1 GUSGraphF=2P0PFGUSGraph
2 1 anim2i FWalksGPGUSGraphF=2P0PFFWalksGPGUSGraph
3 2 ancomd FWalksGPGUSGraphF=2P0PFGUSGraphFWalksGP
4 3simpc GUSGraphF=2P0PFF=2P0PF
5 4 adantl FWalksGPGUSGraphF=2P0PFF=2P0PF
6 usgr2wlkneq GUSGraphFWalksGPF=2P0PFP0P1P0P2P1P2F0F1
7 3 5 6 syl2anc FWalksGPGUSGraphF=2P0PFP0P1P0P2P1P2F0F1
8 fvexd P0P1P0P2P1P2F0F1F0V
9 fvexd P0P1P0P2P1P2F0F1F1V
10 simpr P0P1P0P2P1P2F0F1F0F1
11 8 9 10 3jca P0P1P0P2P1P2F0F1F0VF1VF0F1
12 funcnvs2 F0VF1VF0F1Fun⟨“F0F1”⟩-1
13 7 11 12 3syl FWalksGPGUSGraphF=2P0PFFun⟨“F0F1”⟩-1
14 eqid iEdgG=iEdgG
15 14 wlkf FWalksGPFWorddomiEdgG
16 simp2 GUSGraphF=2P0PFF=2
17 wrdlen2s2 FWorddomiEdgGF=2F=⟨“F0F1”⟩
18 15 16 17 syl2an FWalksGPGUSGraphF=2P0PFF=⟨“F0F1”⟩
19 18 cnveqd FWalksGPGUSGraphF=2P0PFF-1=⟨“F0F1”⟩-1
20 19 funeqd FWalksGPGUSGraphF=2P0PFFunF-1Fun⟨“F0F1”⟩-1
21 13 20 mpbird FWalksGPGUSGraphF=2P0PFFunF-1