| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wallispilem1.1 |  |-  I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) | 
						
							| 2 |  | wallispilem1.2 |  |-  ( ph -> N e. NN0 ) | 
						
							| 3 |  | 0re |  |-  0 e. RR | 
						
							| 4 | 3 | a1i |  |-  ( ph -> 0 e. RR ) | 
						
							| 5 |  | pire |  |-  _pi e. RR | 
						
							| 6 | 5 | a1i |  |-  ( ph -> _pi e. RR ) | 
						
							| 7 |  | peano2nn0 |  |-  ( N e. NN0 -> ( N + 1 ) e. NN0 ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> ( N + 1 ) e. NN0 ) | 
						
							| 9 |  | iblioosinexp |  |-  ( ( 0 e. RR /\ _pi e. RR /\ ( N + 1 ) e. NN0 ) -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ ( N + 1 ) ) ) e. L^1 ) | 
						
							| 10 | 4 6 8 9 | syl3anc |  |-  ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ ( N + 1 ) ) ) e. L^1 ) | 
						
							| 11 |  | iblioosinexp |  |-  ( ( 0 e. RR /\ _pi e. RR /\ N e. NN0 ) -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) | 
						
							| 12 | 4 6 2 11 | syl3anc |  |-  ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) | 
						
							| 13 |  | elioore |  |-  ( x e. ( 0 (,) _pi ) -> x e. RR ) | 
						
							| 14 | 13 | resincld |  |-  ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. RR ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. RR ) | 
						
							| 16 | 8 | adantr |  |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N + 1 ) e. NN0 ) | 
						
							| 17 | 15 16 | reexpcld |  |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N + 1 ) ) e. RR ) | 
						
							| 18 | 2 | adantr |  |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. NN0 ) | 
						
							| 19 | 15 18 | reexpcld |  |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ N ) e. RR ) | 
						
							| 20 | 2 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 21 |  | uzid |  |-  ( N e. ZZ -> N e. ( ZZ>= ` N ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> N e. ( ZZ>= ` N ) ) | 
						
							| 23 |  | peano2uz |  |-  ( N e. ( ZZ>= ` N ) -> ( N + 1 ) e. ( ZZ>= ` N ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> ( N + 1 ) e. ( ZZ>= ` N ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N + 1 ) e. ( ZZ>= ` N ) ) | 
						
							| 26 | 14 3 | jctil |  |-  ( x e. ( 0 (,) _pi ) -> ( 0 e. RR /\ ( sin ` x ) e. RR ) ) | 
						
							| 27 |  | sinq12gt0 |  |-  ( x e. ( 0 (,) _pi ) -> 0 < ( sin ` x ) ) | 
						
							| 28 |  | ltle |  |-  ( ( 0 e. RR /\ ( sin ` x ) e. RR ) -> ( 0 < ( sin ` x ) -> 0 <_ ( sin ` x ) ) ) | 
						
							| 29 | 26 27 28 | sylc |  |-  ( x e. ( 0 (,) _pi ) -> 0 <_ ( sin ` x ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> 0 <_ ( sin ` x ) ) | 
						
							| 31 |  | sinbnd |  |-  ( x e. RR -> ( -u 1 <_ ( sin ` x ) /\ ( sin ` x ) <_ 1 ) ) | 
						
							| 32 | 13 31 | syl |  |-  ( x e. ( 0 (,) _pi ) -> ( -u 1 <_ ( sin ` x ) /\ ( sin ` x ) <_ 1 ) ) | 
						
							| 33 | 32 | simprd |  |-  ( x e. ( 0 (,) _pi ) -> ( sin ` x ) <_ 1 ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) <_ 1 ) | 
						
							| 35 | 15 18 25 30 34 | leexp2rd |  |-  ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N + 1 ) ) <_ ( ( sin ` x ) ^ N ) ) | 
						
							| 36 | 10 12 17 19 35 | itgle |  |-  ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x <_ S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) | 
						
							| 37 |  | oveq2 |  |-  ( n = ( N + 1 ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N + 1 ) ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( n = ( N + 1 ) /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N + 1 ) ) ) | 
						
							| 39 | 38 | itgeq2dv |  |-  ( n = ( N + 1 ) -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x ) | 
						
							| 40 |  | itgex |  |-  S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x e. _V | 
						
							| 41 | 39 1 40 | fvmpt |  |-  ( ( N + 1 ) e. NN0 -> ( I ` ( N + 1 ) ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x ) | 
						
							| 42 | 8 41 | syl |  |-  ( ph -> ( I ` ( N + 1 ) ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x ) | 
						
							| 43 |  | oveq2 |  |-  ( n = N -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( n = N /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) | 
						
							| 45 | 44 | itgeq2dv |  |-  ( n = N -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) | 
						
							| 46 |  | itgex |  |-  S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. _V | 
						
							| 47 | 45 1 46 | fvmpt |  |-  ( N e. NN0 -> ( I ` N ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) | 
						
							| 48 | 2 47 | syl |  |-  ( ph -> ( I ` N ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) | 
						
							| 49 | 36 42 48 | 3brtr4d |  |-  ( ph -> ( I ` ( N + 1 ) ) <_ ( I ` N ) ) |