| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wallispilem2.1 |  |-  I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) | 
						
							| 2 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 3 |  | oveq2 |  |-  ( n = 0 -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ 0 ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ 0 ) ) | 
						
							| 5 |  | ioosscn |  |-  ( 0 (,) _pi ) C_ CC | 
						
							| 6 | 5 | sseli |  |-  ( x e. ( 0 (,) _pi ) -> x e. CC ) | 
						
							| 7 | 6 | sincld |  |-  ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) | 
						
							| 8 | 7 | adantl |  |-  ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) | 
						
							| 9 | 8 | exp0d |  |-  ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ 0 ) = 1 ) | 
						
							| 10 | 4 9 | eqtrd |  |-  ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = 1 ) | 
						
							| 11 | 10 | itgeq2dv |  |-  ( n = 0 -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) 1 _d x ) | 
						
							| 12 |  | ioombl |  |-  ( 0 (,) _pi ) e. dom vol | 
						
							| 13 |  | 0re |  |-  0 e. RR | 
						
							| 14 |  | pire |  |-  _pi e. RR | 
						
							| 15 |  | ioovolcl |  |-  ( ( 0 e. RR /\ _pi e. RR ) -> ( vol ` ( 0 (,) _pi ) ) e. RR ) | 
						
							| 16 | 13 14 15 | mp2an |  |-  ( vol ` ( 0 (,) _pi ) ) e. RR | 
						
							| 17 |  | ax-1cn |  |-  1 e. CC | 
						
							| 18 |  | itgconst |  |-  ( ( ( 0 (,) _pi ) e. dom vol /\ ( vol ` ( 0 (,) _pi ) ) e. RR /\ 1 e. CC ) -> S. ( 0 (,) _pi ) 1 _d x = ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) ) | 
						
							| 19 | 12 16 17 18 | mp3an |  |-  S. ( 0 (,) _pi ) 1 _d x = ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) | 
						
							| 20 | 16 | recni |  |-  ( vol ` ( 0 (,) _pi ) ) e. CC | 
						
							| 21 | 20 | mullidi |  |-  ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) = ( vol ` ( 0 (,) _pi ) ) | 
						
							| 22 |  | pipos |  |-  0 < _pi | 
						
							| 23 | 13 14 22 | ltleii |  |-  0 <_ _pi | 
						
							| 24 |  | volioo |  |-  ( ( 0 e. RR /\ _pi e. RR /\ 0 <_ _pi ) -> ( vol ` ( 0 (,) _pi ) ) = ( _pi - 0 ) ) | 
						
							| 25 | 13 14 23 24 | mp3an |  |-  ( vol ` ( 0 (,) _pi ) ) = ( _pi - 0 ) | 
						
							| 26 | 14 | recni |  |-  _pi e. CC | 
						
							| 27 | 26 | subid1i |  |-  ( _pi - 0 ) = _pi | 
						
							| 28 | 25 27 | eqtri |  |-  ( vol ` ( 0 (,) _pi ) ) = _pi | 
						
							| 29 | 21 28 | eqtri |  |-  ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) = _pi | 
						
							| 30 | 19 29 | eqtri |  |-  S. ( 0 (,) _pi ) 1 _d x = _pi | 
						
							| 31 | 11 30 | eqtrdi |  |-  ( n = 0 -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = _pi ) | 
						
							| 32 | 14 | elexi |  |-  _pi e. _V | 
						
							| 33 | 31 1 32 | fvmpt |  |-  ( 0 e. NN0 -> ( I ` 0 ) = _pi ) | 
						
							| 34 | 2 33 | ax-mp |  |-  ( I ` 0 ) = _pi | 
						
							| 35 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 36 |  | simpl |  |-  ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> n = 1 ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ 1 ) ) | 
						
							| 38 | 7 | adantl |  |-  ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) | 
						
							| 39 | 38 | exp1d |  |-  ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ 1 ) = ( sin ` x ) ) | 
						
							| 40 | 37 39 | eqtrd |  |-  ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( sin ` x ) ) | 
						
							| 41 | 40 | itgeq2dv |  |-  ( n = 1 -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( sin ` x ) _d x ) | 
						
							| 42 |  | itgex |  |-  S. ( 0 (,) _pi ) ( sin ` x ) _d x e. _V | 
						
							| 43 | 41 1 42 | fvmpt |  |-  ( 1 e. NN0 -> ( I ` 1 ) = S. ( 0 (,) _pi ) ( sin ` x ) _d x ) | 
						
							| 44 | 35 43 | ax-mp |  |-  ( I ` 1 ) = S. ( 0 (,) _pi ) ( sin ` x ) _d x | 
						
							| 45 |  | itgsin0pi |  |-  S. ( 0 (,) _pi ) ( sin ` x ) _d x = 2 | 
						
							| 46 | 44 45 | eqtri |  |-  ( I ` 1 ) = 2 | 
						
							| 47 |  | id |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 48 | 1 47 | itgsinexp |  |-  ( N e. ( ZZ>= ` 2 ) -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) | 
						
							| 49 | 34 46 48 | 3pm3.2i |  |-  ( ( I ` 0 ) = _pi /\ ( I ` 1 ) = 2 /\ ( N e. ( ZZ>= ` 2 ) -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) ) |