| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgsinexp.1 |
|- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
| 2 |
|
itgsinexp.2 |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
| 3 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
| 4 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 5 |
2 3 4
|
3syl |
|- ( ph -> N e. CC ) |
| 6 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 7 |
5 6
|
npcand |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 8 |
7
|
eqcomd |
|- ( ph -> N = ( ( N - 1 ) + 1 ) ) |
| 9 |
8
|
oveq1d |
|- ( ph -> ( N x. ( I ` N ) ) = ( ( ( N - 1 ) + 1 ) x. ( I ` N ) ) ) |
| 10 |
|
uz2m1nn |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
| 11 |
2 10
|
syl |
|- ( ph -> ( N - 1 ) e. NN ) |
| 12 |
11
|
nncnd |
|- ( ph -> ( N - 1 ) e. CC ) |
| 13 |
1
|
a1i |
|- ( ph -> I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ) |
| 14 |
|
oveq2 |
|- ( n = N -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) |
| 15 |
14
|
ad2antlr |
|- ( ( ( ph /\ n = N ) /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) |
| 16 |
15
|
itgeq2dv |
|- ( ( ph /\ n = N ) -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 17 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 18 |
|
npcan |
|- ( ( N e. CC /\ 2 e. CC ) -> ( ( N - 2 ) + 2 ) = N ) |
| 19 |
18
|
eqcomd |
|- ( ( N e. CC /\ 2 e. CC ) -> N = ( ( N - 2 ) + 2 ) ) |
| 20 |
5 17 19
|
syl2anc |
|- ( ph -> N = ( ( N - 2 ) + 2 ) ) |
| 21 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. NN0 ) |
| 22 |
2 21
|
syl |
|- ( ph -> ( N - 2 ) e. NN0 ) |
| 23 |
|
2nn0 |
|- 2 e. NN0 |
| 24 |
23
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 25 |
22 24
|
nn0addcld |
|- ( ph -> ( ( N - 2 ) + 2 ) e. NN0 ) |
| 26 |
20 25
|
eqeltrd |
|- ( ph -> N e. NN0 ) |
| 27 |
|
itgex |
|- S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. _V |
| 28 |
27
|
a1i |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. _V ) |
| 29 |
13 16 26 28
|
fvmptd |
|- ( ph -> ( I ` N ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 30 |
|
ioosscn |
|- ( 0 (,) _pi ) C_ CC |
| 31 |
30
|
sseli |
|- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
| 32 |
31
|
sincld |
|- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) |
| 33 |
32
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) |
| 34 |
26
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. NN0 ) |
| 35 |
33 34
|
expcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 36 |
|
ioossicc |
|- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
| 37 |
36
|
a1i |
|- ( ph -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
| 38 |
|
ioombl |
|- ( 0 (,) _pi ) e. dom vol |
| 39 |
38
|
a1i |
|- ( ph -> ( 0 (,) _pi ) e. dom vol ) |
| 40 |
|
0re |
|- 0 e. RR |
| 41 |
|
pire |
|- _pi e. RR |
| 42 |
|
iccssre |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
| 43 |
40 41 42
|
mp2an |
|- ( 0 [,] _pi ) C_ RR |
| 44 |
|
ax-resscn |
|- RR C_ CC |
| 45 |
43 44
|
sstri |
|- ( 0 [,] _pi ) C_ CC |
| 46 |
45
|
sseli |
|- ( x e. ( 0 [,] _pi ) -> x e. CC ) |
| 47 |
46
|
sincld |
|- ( x e. ( 0 [,] _pi ) -> ( sin ` x ) e. CC ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( sin ` x ) e. CC ) |
| 49 |
26
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. NN0 ) |
| 50 |
48 49
|
expcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 51 |
40
|
a1i |
|- ( ph -> 0 e. RR ) |
| 52 |
41
|
a1i |
|- ( ph -> _pi e. RR ) |
| 53 |
46
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> x e. CC ) |
| 54 |
|
eqid |
|- ( x e. CC |-> ( ( sin ` x ) ^ N ) ) = ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
| 55 |
54
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
| 56 |
53 50 55
|
syl2anc |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) = ( ( sin ` x ) ^ N ) ) |
| 57 |
56
|
eqcomd |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) |
| 58 |
57
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) ) |
| 59 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
| 60 |
|
nfcv |
|- F/_ x sin |
| 61 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
| 62 |
61
|
a1i |
|- ( ph -> sin e. ( CC -cn-> CC ) ) |
| 63 |
60 62 26
|
expcnfg |
|- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) ) |
| 64 |
45
|
a1i |
|- ( ph -> ( 0 [,] _pi ) C_ CC ) |
| 65 |
59 63 64
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 66 |
58 65
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 67 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| 68 |
51 52 66 67
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| 69 |
37 39 50 68
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| 70 |
35 69
|
itgcl |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. CC ) |
| 71 |
29 70
|
eqeltrd |
|- ( ph -> ( I ` N ) e. CC ) |
| 72 |
12 71
|
adddirp1d |
|- ( ph -> ( ( ( N - 1 ) + 1 ) x. ( I ` N ) ) = ( ( ( N - 1 ) x. ( I ` N ) ) + ( I ` N ) ) ) |
| 73 |
|
eluz2b2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |
| 74 |
2 73
|
sylib |
|- ( ph -> ( N e. NN /\ 1 < N ) ) |
| 75 |
74
|
simpld |
|- ( ph -> N e. NN ) |
| 76 |
|
expm1t |
|- ( ( ( sin ` x ) e. CC /\ N e. NN ) -> ( ( sin ` x ) ^ N ) = ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) |
| 77 |
32 75 76
|
syl2anr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ N ) = ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) |
| 78 |
77
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x = S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) _d x ) |
| 79 |
|
eqid |
|- ( x e. CC |-> ( ( sin ` x ) ^ ( N - 1 ) ) ) = ( x e. CC |-> ( ( sin ` x ) ^ ( N - 1 ) ) ) |
| 80 |
|
eqid |
|- ( x e. CC |-> -u ( cos ` x ) ) = ( x e. CC |-> -u ( cos ` x ) ) |
| 81 |
|
eqid |
|- ( x e. CC |-> ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) ) = ( x e. CC |-> ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) ) |
| 82 |
|
eqid |
|- ( x e. CC |-> ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) = ( x e. CC |-> ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) ) |
| 83 |
|
eqid |
|- ( x e. CC |-> ( ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) = ( x e. CC |-> ( ( ( ( N - 1 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) |
| 84 |
|
eqid |
|- ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) ) = ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) ) |
| 85 |
79 80 81 82 83 84 11
|
itgsinexplem1 |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) _d x = ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) _d x ) ) |
| 86 |
5 6 6
|
subsub4d |
|- ( ph -> ( ( N - 1 ) - 1 ) = ( N - ( 1 + 1 ) ) ) |
| 87 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 88 |
87
|
a1i |
|- ( ph -> ( 1 + 1 ) = 2 ) |
| 89 |
88
|
oveq2d |
|- ( ph -> ( N - ( 1 + 1 ) ) = ( N - 2 ) ) |
| 90 |
86 89
|
eqtrd |
|- ( ph -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) |
| 91 |
90
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) |
| 92 |
91
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 93 |
92
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
| 94 |
93
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) _d x = S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) |
| 95 |
94
|
oveq2d |
|- ( ph -> ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( ( N - 1 ) - 1 ) ) ) _d x ) = ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) ) |
| 96 |
|
sincossq |
|- ( x e. CC -> ( ( ( sin ` x ) ^ 2 ) + ( ( cos ` x ) ^ 2 ) ) = 1 ) |
| 97 |
|
1cnd |
|- ( x e. CC -> 1 e. CC ) |
| 98 |
|
sincl |
|- ( x e. CC -> ( sin ` x ) e. CC ) |
| 99 |
98
|
sqcld |
|- ( x e. CC -> ( ( sin ` x ) ^ 2 ) e. CC ) |
| 100 |
|
coscl |
|- ( x e. CC -> ( cos ` x ) e. CC ) |
| 101 |
100
|
sqcld |
|- ( x e. CC -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 102 |
97 99 101
|
subaddd |
|- ( x e. CC -> ( ( 1 - ( ( sin ` x ) ^ 2 ) ) = ( ( cos ` x ) ^ 2 ) <-> ( ( ( sin ` x ) ^ 2 ) + ( ( cos ` x ) ^ 2 ) ) = 1 ) ) |
| 103 |
96 102
|
mpbird |
|- ( x e. CC -> ( 1 - ( ( sin ` x ) ^ 2 ) ) = ( ( cos ` x ) ^ 2 ) ) |
| 104 |
103
|
eqcomd |
|- ( x e. CC -> ( ( cos ` x ) ^ 2 ) = ( 1 - ( ( sin ` x ) ^ 2 ) ) ) |
| 105 |
31 104
|
syl |
|- ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) ^ 2 ) = ( 1 - ( ( sin ` x ) ^ 2 ) ) ) |
| 106 |
105
|
oveq1d |
|- ( x e. ( 0 (,) _pi ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
| 107 |
106
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
| 108 |
107
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x = S. ( 0 (,) _pi ) ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) |
| 109 |
|
1cnd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> 1 e. CC ) |
| 110 |
32
|
sqcld |
|- ( x e. ( 0 (,) _pi ) -> ( ( sin ` x ) ^ 2 ) e. CC ) |
| 111 |
110
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ 2 ) e. CC ) |
| 112 |
90
|
eqcomd |
|- ( ph -> ( N - 2 ) = ( ( N - 1 ) - 1 ) ) |
| 113 |
|
nnm1nn0 |
|- ( ( N - 1 ) e. NN -> ( ( N - 1 ) - 1 ) e. NN0 ) |
| 114 |
11 113
|
syl |
|- ( ph -> ( ( N - 1 ) - 1 ) e. NN0 ) |
| 115 |
112 114
|
eqeltrd |
|- ( ph -> ( N - 2 ) e. NN0 ) |
| 116 |
115
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N - 2 ) e. NN0 ) |
| 117 |
33 116
|
expcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N - 2 ) ) e. CC ) |
| 118 |
109 111 117
|
subdird |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( 1 x. ( ( sin ` x ) ^ ( N - 2 ) ) ) - ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) ) |
| 119 |
117
|
mullidd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( 1 x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 120 |
23
|
a1i |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> 2 e. NN0 ) |
| 121 |
33 116 120
|
expaddd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( 2 + ( N - 2 ) ) ) = ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) |
| 122 |
17 5
|
pncan3d |
|- ( ph -> ( 2 + ( N - 2 ) ) = N ) |
| 123 |
122
|
oveq2d |
|- ( ph -> ( ( sin ` x ) ^ ( 2 + ( N - 2 ) ) ) = ( ( sin ` x ) ^ N ) ) |
| 124 |
123
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( 2 + ( N - 2 ) ) ) = ( ( sin ` x ) ^ N ) ) |
| 125 |
121 124
|
eqtr3d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( sin ` x ) ^ N ) ) |
| 126 |
119 125
|
oveq12d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( 1 x. ( ( sin ` x ) ^ ( N - 2 ) ) ) - ( ( ( sin ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) ) = ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) ) |
| 127 |
118 126
|
eqtrd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) ) |
| 128 |
127
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( 1 - ( ( sin ` x ) ^ 2 ) ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x = S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) _d x ) |
| 129 |
115
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N - 2 ) e. NN0 ) |
| 130 |
48 129
|
expcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ ( N - 2 ) ) e. CC ) |
| 131 |
|
eqid |
|- ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 132 |
131
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( sin ` x ) ^ ( N - 2 ) ) e. CC ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 133 |
53 130 132
|
syl2anc |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 134 |
133
|
eqcomd |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ ( N - 2 ) ) = ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) ) |
| 135 |
134
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) ) ) |
| 136 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 137 |
60 62 115
|
expcnfg |
|- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. ( CC -cn-> CC ) ) |
| 138 |
136 137 64
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( x e. CC |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 139 |
135 138
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 140 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. L^1 ) |
| 141 |
51 52 139 140
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. L^1 ) |
| 142 |
37 39 130 141
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ ( N - 2 ) ) ) e. L^1 ) |
| 143 |
117 142 35 69
|
itgsub |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 2 ) ) - ( ( sin ` x ) ^ N ) ) _d x = ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) |
| 144 |
108 128 143
|
3eqtrd |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x = ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) |
| 145 |
144
|
oveq2d |
|- ( ph -> ( ( N - 1 ) x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 2 ) ) ) _d x ) = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
| 146 |
85 95 145
|
3eqtrd |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( sin ` x ) ) _d x = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
| 147 |
29 78 146
|
3eqtrd |
|- ( ph -> ( I ` N ) = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
| 148 |
|
oveq2 |
|- ( n = ( N - 2 ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 149 |
148
|
adantr |
|- ( ( n = ( N - 2 ) /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N - 2 ) ) ) |
| 150 |
149
|
itgeq2dv |
|- ( n = ( N - 2 ) -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x ) |
| 151 |
|
itgex |
|- S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x e. _V |
| 152 |
151
|
a1i |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x e. _V ) |
| 153 |
1 150 115 152
|
fvmptd3 |
|- ( ph -> ( I ` ( N - 2 ) ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x ) |
| 154 |
153 29
|
oveq12d |
|- ( ph -> ( ( I ` ( N - 2 ) ) - ( I ` N ) ) = ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) |
| 155 |
154
|
oveq2d |
|- ( ph -> ( ( N - 1 ) x. ( ( I ` ( N - 2 ) ) - ( I ` N ) ) ) = ( ( N - 1 ) x. ( S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x - S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) ) ) |
| 156 |
117 142
|
itgcl |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N - 2 ) ) _d x e. CC ) |
| 157 |
153 156
|
eqeltrd |
|- ( ph -> ( I ` ( N - 2 ) ) e. CC ) |
| 158 |
12 157 71
|
subdid |
|- ( ph -> ( ( N - 1 ) x. ( ( I ` ( N - 2 ) ) - ( I ` N ) ) ) = ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) ) |
| 159 |
147 155 158
|
3eqtr2d |
|- ( ph -> ( I ` N ) = ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) ) |
| 160 |
159
|
eqcomd |
|- ( ph -> ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) = ( I ` N ) ) |
| 161 |
12 157
|
mulcld |
|- ( ph -> ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) e. CC ) |
| 162 |
12 71
|
mulcld |
|- ( ph -> ( ( N - 1 ) x. ( I ` N ) ) e. CC ) |
| 163 |
161 162 71
|
subaddd |
|- ( ph -> ( ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) - ( ( N - 1 ) x. ( I ` N ) ) ) = ( I ` N ) <-> ( ( ( N - 1 ) x. ( I ` N ) ) + ( I ` N ) ) = ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) ) ) |
| 164 |
160 163
|
mpbid |
|- ( ph -> ( ( ( N - 1 ) x. ( I ` N ) ) + ( I ` N ) ) = ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) ) |
| 165 |
9 72 164
|
3eqtrd |
|- ( ph -> ( N x. ( I ` N ) ) = ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) ) |
| 166 |
165
|
oveq1d |
|- ( ph -> ( ( N x. ( I ` N ) ) / N ) = ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) / N ) ) |
| 167 |
75
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 168 |
71 5 167
|
divcan3d |
|- ( ph -> ( ( N x. ( I ` N ) ) / N ) = ( I ` N ) ) |
| 169 |
12 157 5 167
|
div23d |
|- ( ph -> ( ( ( N - 1 ) x. ( I ` ( N - 2 ) ) ) / N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) |
| 170 |
166 168 169
|
3eqtr3d |
|- ( ph -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) |