| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgsinexplem1.1 |
|- F = ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
| 2 |
|
itgsinexplem1.2 |
|- G = ( x e. CC |-> -u ( cos ` x ) ) |
| 3 |
|
itgsinexplem1.3 |
|- H = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
| 4 |
|
itgsinexplem1.4 |
|- I = ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
| 5 |
|
itgsinexplem1.5 |
|- L = ( x e. CC |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) |
| 6 |
|
itgsinexplem1.6 |
|- M = ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
| 7 |
|
itgsinexplem1.7 |
|- ( ph -> N e. NN ) |
| 8 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 9 |
8
|
oveq1i |
|- ( ( 0 - 0 ) - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) |
| 10 |
|
0re |
|- 0 e. RR |
| 11 |
10
|
a1i |
|- ( ph -> 0 e. RR ) |
| 12 |
|
pire |
|- _pi e. RR |
| 13 |
12
|
a1i |
|- ( ph -> _pi e. RR ) |
| 14 |
|
pipos |
|- 0 < _pi |
| 15 |
10 12 14
|
ltleii |
|- 0 <_ _pi |
| 16 |
15
|
a1i |
|- ( ph -> 0 <_ _pi ) |
| 17 |
10 12
|
pm3.2i |
|- ( 0 e. RR /\ _pi e. RR ) |
| 18 |
|
iccssre |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
| 19 |
17 18
|
ax-mp |
|- ( 0 [,] _pi ) C_ RR |
| 20 |
|
ax-resscn |
|- RR C_ CC |
| 21 |
19 20
|
sstri |
|- ( 0 [,] _pi ) C_ CC |
| 22 |
21
|
sseli |
|- ( x e. ( 0 [,] _pi ) -> x e. CC ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> x e. CC ) |
| 24 |
22
|
sincld |
|- ( x e. ( 0 [,] _pi ) -> ( sin ` x ) e. CC ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( sin ` x ) e. CC ) |
| 26 |
7
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. NN0 ) |
| 28 |
25 27
|
expcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 29 |
1
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( sin ` x ) ^ N ) e. CC ) -> ( F ` x ) = ( ( sin ` x ) ^ N ) ) |
| 30 |
23 28 29
|
syl2anc |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( F ` x ) = ( ( sin ` x ) ^ N ) ) |
| 31 |
30
|
eqcomd |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ N ) = ( F ` x ) ) |
| 32 |
31
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) = ( x e. ( 0 [,] _pi ) |-> ( F ` x ) ) ) |
| 33 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |
| 34 |
1 33
|
nfcxfr |
|- F/_ x F |
| 35 |
|
nfcv |
|- F/_ x sin |
| 36 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
| 37 |
36
|
a1i |
|- ( ph -> sin e. ( CC -cn-> CC ) ) |
| 38 |
35 37 26
|
expcnfg |
|- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ N ) ) e. ( CC -cn-> CC ) ) |
| 39 |
1 38
|
eqeltrid |
|- ( ph -> F e. ( CC -cn-> CC ) ) |
| 40 |
21
|
a1i |
|- ( ph -> ( 0 [,] _pi ) C_ CC ) |
| 41 |
34 39 40
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( F ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 42 |
32 41
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 43 |
22
|
coscld |
|- ( x e. ( 0 [,] _pi ) -> ( cos ` x ) e. CC ) |
| 44 |
43
|
negcld |
|- ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) e. CC ) |
| 45 |
2
|
fvmpt2 |
|- ( ( x e. CC /\ -u ( cos ` x ) e. CC ) -> ( G ` x ) = -u ( cos ` x ) ) |
| 46 |
22 44 45
|
syl2anc |
|- ( x e. ( 0 [,] _pi ) -> ( G ` x ) = -u ( cos ` x ) ) |
| 47 |
46
|
eqcomd |
|- ( x e. ( 0 [,] _pi ) -> -u ( cos ` x ) = ( G ` x ) ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) = ( G ` x ) ) |
| 49 |
48
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) = ( x e. ( 0 [,] _pi ) |-> ( G ` x ) ) ) |
| 50 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> -u ( cos ` x ) ) |
| 51 |
2 50
|
nfcxfr |
|- F/_ x G |
| 52 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
| 53 |
52
|
a1i |
|- ( ph -> cos e. ( CC -cn-> CC ) ) |
| 54 |
2
|
negfcncf |
|- ( cos e. ( CC -cn-> CC ) -> G e. ( CC -cn-> CC ) ) |
| 55 |
53 54
|
syl |
|- ( ph -> G e. ( CC -cn-> CC ) ) |
| 56 |
51 55 40
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( G ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 57 |
49 56
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 58 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
| 59 |
7
|
nncnd |
|- ( ph -> N e. CC ) |
| 60 |
58 59 58
|
constcncfg |
|- ( ph -> ( x e. CC |-> N ) e. ( CC -cn-> CC ) ) |
| 61 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 62 |
7 61
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
| 63 |
35 37 62
|
expcnfg |
|- ( ph -> ( x e. CC |-> ( ( sin ` x ) ^ ( N - 1 ) ) ) e. ( CC -cn-> CC ) ) |
| 64 |
60 63
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
| 65 |
|
cosf |
|- cos : CC --> CC |
| 66 |
65
|
a1i |
|- ( ph -> cos : CC --> CC ) |
| 67 |
66
|
feqmptd |
|- ( ph -> cos = ( x e. CC |-> ( cos ` x ) ) ) |
| 68 |
67 52
|
eqeltrrdi |
|- ( ph -> ( x e. CC |-> ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
| 69 |
64 68
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) e. ( CC -cn-> CC ) ) |
| 70 |
3 69
|
eqeltrid |
|- ( ph -> H e. ( CC -cn-> CC ) ) |
| 71 |
|
ioosscn |
|- ( 0 (,) _pi ) C_ CC |
| 72 |
71
|
a1i |
|- ( ph -> ( 0 (,) _pi ) C_ CC ) |
| 73 |
59
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. CC ) |
| 74 |
71
|
sseli |
|- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
| 75 |
74
|
sincld |
|- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) |
| 76 |
75
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) |
| 77 |
62
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N - 1 ) e. NN0 ) |
| 78 |
76 77
|
expcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC ) |
| 79 |
73 78
|
mulcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 80 |
74
|
coscld |
|- ( x e. ( 0 (,) _pi ) -> ( cos ` x ) e. CC ) |
| 81 |
80
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( cos ` x ) e. CC ) |
| 82 |
79 81
|
mulcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC ) |
| 83 |
3 70 72 58 82
|
cncfmptssg |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 84 |
35 37 72
|
cncfmptss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) e. ( ( 0 (,) _pi ) -cn-> CC ) ) |
| 85 |
|
ioossicc |
|- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
| 86 |
85
|
a1i |
|- ( ph -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
| 87 |
|
ioombl |
|- ( 0 (,) _pi ) e. dom vol |
| 88 |
87
|
a1i |
|- ( ph -> ( 0 (,) _pi ) e. dom vol ) |
| 89 |
28 25
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) e. CC ) |
| 90 |
4
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) e. CC ) -> ( I ` x ) = ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
| 91 |
23 89 90
|
syl2anc |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( I ` x ) = ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
| 92 |
91
|
eqcomd |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) = ( I ` x ) ) |
| 93 |
92
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( I ` x ) ) ) |
| 94 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) |
| 95 |
4 94
|
nfcxfr |
|- F/_ x I |
| 96 |
|
sinf |
|- sin : CC --> CC |
| 97 |
96
|
a1i |
|- ( ph -> sin : CC --> CC ) |
| 98 |
97
|
feqmptd |
|- ( ph -> sin = ( x e. CC |-> ( sin ` x ) ) ) |
| 99 |
98 36
|
eqeltrrdi |
|- ( ph -> ( x e. CC |-> ( sin ` x ) ) e. ( CC -cn-> CC ) ) |
| 100 |
38 99
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( CC -cn-> CC ) ) |
| 101 |
4 100
|
eqeltrid |
|- ( ph -> I e. ( CC -cn-> CC ) ) |
| 102 |
95 101 40
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( I ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 103 |
93 102
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 104 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 ) |
| 105 |
11 13 103 104
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 ) |
| 106 |
86 88 89 105
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) ) e. L^1 ) |
| 107 |
59
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> N e. CC ) |
| 108 |
62
|
adantr |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N - 1 ) e. NN0 ) |
| 109 |
25 108
|
expcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC ) |
| 110 |
107 109
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 111 |
43
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( cos ` x ) e. CC ) |
| 112 |
110 111
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC ) |
| 113 |
44
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> -u ( cos ` x ) e. CC ) |
| 114 |
112 113
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) e. CC ) |
| 115 |
|
eqid |
|- ( x e. CC |-> -u ( cos ` x ) ) = ( x e. CC |-> -u ( cos ` x ) ) |
| 116 |
115
|
negfcncf |
|- ( cos e. ( CC -cn-> CC ) -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
| 117 |
53 116
|
syl |
|- ( ph -> ( x e. CC |-> -u ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
| 118 |
69 117
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( CC -cn-> CC ) ) |
| 119 |
5 118
|
eqeltrid |
|- ( ph -> L e. ( CC -cn-> CC ) ) |
| 120 |
5 119 40 58 114
|
cncfmptssg |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 121 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 ) |
| 122 |
11 13 120 121
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 ) |
| 123 |
86 88 114 122
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) ) e. L^1 ) |
| 124 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 125 |
124
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 126 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 127 |
126
|
sincld |
|- ( x e. RR -> ( sin ` x ) e. CC ) |
| 128 |
127
|
adantl |
|- ( ( ph /\ x e. RR ) -> ( sin ` x ) e. CC ) |
| 129 |
26
|
adantr |
|- ( ( ph /\ x e. RR ) -> N e. NN0 ) |
| 130 |
128 129
|
expcld |
|- ( ( ph /\ x e. RR ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 131 |
59
|
adantr |
|- ( ( ph /\ x e. RR ) -> N e. CC ) |
| 132 |
62
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( N - 1 ) e. NN0 ) |
| 133 |
128 132
|
expcld |
|- ( ( ph /\ x e. RR ) -> ( ( sin ` x ) ^ ( N - 1 ) ) e. CC ) |
| 134 |
131 133
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 135 |
126
|
coscld |
|- ( x e. RR -> ( cos ` x ) e. CC ) |
| 136 |
135
|
adantl |
|- ( ( ph /\ x e. RR ) -> ( cos ` x ) e. CC ) |
| 137 |
134 136
|
mulcld |
|- ( ( ph /\ x e. RR ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC ) |
| 138 |
|
sincl |
|- ( x e. CC -> ( sin ` x ) e. CC ) |
| 139 |
138
|
adantl |
|- ( ( ph /\ x e. CC ) -> ( sin ` x ) e. CC ) |
| 140 |
26
|
adantr |
|- ( ( ph /\ x e. CC ) -> N e. NN0 ) |
| 141 |
139 140
|
expcld |
|- ( ( ph /\ x e. CC ) -> ( ( sin ` x ) ^ N ) e. CC ) |
| 142 |
141 1
|
fmptd |
|- ( ph -> F : CC --> CC ) |
| 143 |
126
|
adantl |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
| 144 |
|
elex |
|- ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. CC -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V ) |
| 145 |
137 144
|
syl |
|- ( ( ph /\ x e. RR ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V ) |
| 146 |
|
rabid |
|- ( x e. { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } <-> ( x e. CC /\ ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V ) ) |
| 147 |
143 145 146
|
sylanbrc |
|- ( ( ph /\ x e. RR ) -> x e. { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } ) |
| 148 |
3
|
dmmpt |
|- dom H = { x e. CC | ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) e. _V } |
| 149 |
147 148
|
eleqtrrdi |
|- ( ( ph /\ x e. RR ) -> x e. dom H ) |
| 150 |
149
|
ex |
|- ( ph -> ( x e. RR -> x e. dom H ) ) |
| 151 |
150
|
alrimiv |
|- ( ph -> A. x ( x e. RR -> x e. dom H ) ) |
| 152 |
|
nfcv |
|- F/_ x RR |
| 153 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
| 154 |
3 153
|
nfcxfr |
|- F/_ x H |
| 155 |
154
|
nfdm |
|- F/_ x dom H |
| 156 |
152 155
|
dfssf |
|- ( RR C_ dom H <-> A. x ( x e. RR -> x e. dom H ) ) |
| 157 |
151 156
|
sylibr |
|- ( ph -> RR C_ dom H ) |
| 158 |
7
|
dvsinexp |
|- ( ph -> ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
| 159 |
1
|
oveq2i |
|- ( CC _D F ) = ( CC _D ( x e. CC |-> ( ( sin ` x ) ^ N ) ) ) |
| 160 |
158 159 3
|
3eqtr4g |
|- ( ph -> ( CC _D F ) = H ) |
| 161 |
160
|
dmeqd |
|- ( ph -> dom ( CC _D F ) = dom H ) |
| 162 |
157 161
|
sseqtrrd |
|- ( ph -> RR C_ dom ( CC _D F ) ) |
| 163 |
|
dvres3 |
|- ( ( ( RR e. { RR , CC } /\ F : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D F ) ) ) -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
| 164 |
125 142 58 162 163
|
syl22anc |
|- ( ph -> ( RR _D ( F |` RR ) ) = ( ( CC _D F ) |` RR ) ) |
| 165 |
1
|
reseq1i |
|- ( F |` RR ) = ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) |
| 166 |
|
resmpt |
|- ( RR C_ CC -> ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) |
| 167 |
20 166
|
ax-mp |
|- ( ( x e. CC |-> ( ( sin ` x ) ^ N ) ) |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) ) |
| 168 |
165 167
|
eqtri |
|- ( F |` RR ) = ( x e. RR |-> ( ( sin ` x ) ^ N ) ) |
| 169 |
168
|
oveq2i |
|- ( RR _D ( F |` RR ) ) = ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) |
| 170 |
169
|
a1i |
|- ( ph -> ( RR _D ( F |` RR ) ) = ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) ) |
| 171 |
160
|
reseq1d |
|- ( ph -> ( ( CC _D F ) |` RR ) = ( H |` RR ) ) |
| 172 |
3
|
reseq1i |
|- ( H |` RR ) = ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) |
| 173 |
|
resmpt |
|- ( RR C_ CC -> ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
| 174 |
20 173
|
ax-mp |
|- ( ( x e. CC |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
| 175 |
172 174
|
eqtri |
|- ( H |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) |
| 176 |
171 175
|
eqtrdi |
|- ( ph -> ( ( CC _D F ) |` RR ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
| 177 |
164 170 176
|
3eqtr3d |
|- ( ph -> ( RR _D ( x e. RR |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. RR |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
| 178 |
19
|
a1i |
|- ( ph -> ( 0 [,] _pi ) C_ RR ) |
| 179 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 180 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 181 |
17
|
a1i |
|- ( ph -> ( 0 e. RR /\ _pi e. RR ) ) |
| 182 |
|
iccntr |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) |
| 183 |
181 182
|
syl |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] _pi ) ) = ( 0 (,) _pi ) ) |
| 184 |
125 130 137 177 178 179 180 183
|
dvmptres2 |
|- ( ph -> ( RR _D ( x e. ( 0 [,] _pi ) |-> ( ( sin ` x ) ^ N ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) ) ) |
| 185 |
135
|
negcld |
|- ( x e. RR -> -u ( cos ` x ) e. CC ) |
| 186 |
185
|
adantl |
|- ( ( ph /\ x e. RR ) -> -u ( cos ` x ) e. CC ) |
| 187 |
127
|
negcld |
|- ( x e. RR -> -u ( sin ` x ) e. CC ) |
| 188 |
187
|
adantl |
|- ( ( ph /\ x e. RR ) -> -u ( sin ` x ) e. CC ) |
| 189 |
|
dvcosre |
|- ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) |
| 190 |
189
|
a1i |
|- ( ph -> ( RR _D ( x e. RR |-> ( cos ` x ) ) ) = ( x e. RR |-> -u ( sin ` x ) ) ) |
| 191 |
125 136 188 190
|
dvmptneg |
|- ( ph -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> -u -u ( sin ` x ) ) ) |
| 192 |
127
|
negnegd |
|- ( x e. RR -> -u -u ( sin ` x ) = ( sin ` x ) ) |
| 193 |
192
|
adantl |
|- ( ( ph /\ x e. RR ) -> -u -u ( sin ` x ) = ( sin ` x ) ) |
| 194 |
193
|
mpteq2dva |
|- ( ph -> ( x e. RR |-> -u -u ( sin ` x ) ) = ( x e. RR |-> ( sin ` x ) ) ) |
| 195 |
191 194
|
eqtrd |
|- ( ph -> ( RR _D ( x e. RR |-> -u ( cos ` x ) ) ) = ( x e. RR |-> ( sin ` x ) ) ) |
| 196 |
125 186 128 195 178 179 180 183
|
dvmptres2 |
|- ( ph -> ( RR _D ( x e. ( 0 [,] _pi ) |-> -u ( cos ` x ) ) ) = ( x e. ( 0 (,) _pi ) |-> ( sin ` x ) ) ) |
| 197 |
|
fveq2 |
|- ( x = 0 -> ( sin ` x ) = ( sin ` 0 ) ) |
| 198 |
|
sin0 |
|- ( sin ` 0 ) = 0 |
| 199 |
197 198
|
eqtrdi |
|- ( x = 0 -> ( sin ` x ) = 0 ) |
| 200 |
199
|
oveq1d |
|- ( x = 0 -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
| 201 |
200
|
adantl |
|- ( ( ph /\ x = 0 ) -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
| 202 |
7
|
adantr |
|- ( ( ph /\ x = 0 ) -> N e. NN ) |
| 203 |
202
|
0expd |
|- ( ( ph /\ x = 0 ) -> ( 0 ^ N ) = 0 ) |
| 204 |
201 203
|
eqtrd |
|- ( ( ph /\ x = 0 ) -> ( ( sin ` x ) ^ N ) = 0 ) |
| 205 |
204
|
oveq1d |
|- ( ( ph /\ x = 0 ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = ( 0 x. -u ( cos ` x ) ) ) |
| 206 |
|
id |
|- ( x = 0 -> x = 0 ) |
| 207 |
|
0cn |
|- 0 e. CC |
| 208 |
206 207
|
eqeltrdi |
|- ( x = 0 -> x e. CC ) |
| 209 |
|
coscl |
|- ( x e. CC -> ( cos ` x ) e. CC ) |
| 210 |
209
|
negcld |
|- ( x e. CC -> -u ( cos ` x ) e. CC ) |
| 211 |
208 210
|
syl |
|- ( x = 0 -> -u ( cos ` x ) e. CC ) |
| 212 |
211
|
adantl |
|- ( ( ph /\ x = 0 ) -> -u ( cos ` x ) e. CC ) |
| 213 |
212
|
mul02d |
|- ( ( ph /\ x = 0 ) -> ( 0 x. -u ( cos ` x ) ) = 0 ) |
| 214 |
205 213
|
eqtrd |
|- ( ( ph /\ x = 0 ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = 0 ) |
| 215 |
|
fveq2 |
|- ( x = _pi -> ( sin ` x ) = ( sin ` _pi ) ) |
| 216 |
|
sinpi |
|- ( sin ` _pi ) = 0 |
| 217 |
215 216
|
eqtrdi |
|- ( x = _pi -> ( sin ` x ) = 0 ) |
| 218 |
217
|
oveq1d |
|- ( x = _pi -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
| 219 |
218
|
adantl |
|- ( ( ph /\ x = _pi ) -> ( ( sin ` x ) ^ N ) = ( 0 ^ N ) ) |
| 220 |
7
|
adantr |
|- ( ( ph /\ x = _pi ) -> N e. NN ) |
| 221 |
220
|
0expd |
|- ( ( ph /\ x = _pi ) -> ( 0 ^ N ) = 0 ) |
| 222 |
219 221
|
eqtrd |
|- ( ( ph /\ x = _pi ) -> ( ( sin ` x ) ^ N ) = 0 ) |
| 223 |
222
|
oveq1d |
|- ( ( ph /\ x = _pi ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = ( 0 x. -u ( cos ` x ) ) ) |
| 224 |
|
id |
|- ( x = _pi -> x = _pi ) |
| 225 |
|
picn |
|- _pi e. CC |
| 226 |
224 225
|
eqeltrdi |
|- ( x = _pi -> x e. CC ) |
| 227 |
226
|
coscld |
|- ( x = _pi -> ( cos ` x ) e. CC ) |
| 228 |
227
|
negcld |
|- ( x = _pi -> -u ( cos ` x ) e. CC ) |
| 229 |
228
|
adantl |
|- ( ( ph /\ x = _pi ) -> -u ( cos ` x ) e. CC ) |
| 230 |
229
|
mul02d |
|- ( ( ph /\ x = _pi ) -> ( 0 x. -u ( cos ` x ) ) = 0 ) |
| 231 |
223 230
|
eqtrd |
|- ( ( ph /\ x = _pi ) -> ( ( ( sin ` x ) ^ N ) x. -u ( cos ` x ) ) = 0 ) |
| 232 |
11 13 16 42 57 83 84 106 123 184 196 214 231
|
itgparts |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = ( ( 0 - 0 ) - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) ) |
| 233 |
|
df-neg |
|- -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) |
| 234 |
233
|
a1i |
|- ( ph -> -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( 0 - S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) ) |
| 235 |
9 232 234
|
3eqtr4a |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x ) |
| 236 |
79 81 81
|
mulassd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) ) |
| 237 |
|
sqval |
|- ( ( cos ` x ) e. CC -> ( ( cos ` x ) ^ 2 ) = ( ( cos ` x ) x. ( cos ` x ) ) ) |
| 238 |
237
|
eqcomd |
|- ( ( cos ` x ) e. CC -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) ) |
| 239 |
80 238
|
syl |
|- ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) ) |
| 240 |
239
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( cos ` x ) x. ( cos ` x ) ) = ( ( cos ` x ) ^ 2 ) ) |
| 241 |
240
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) = ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) ^ 2 ) ) ) |
| 242 |
80
|
sqcld |
|- ( x e. ( 0 (,) _pi ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 243 |
242
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 244 |
73 78 243
|
mulassd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) ^ 2 ) ) = ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) ) |
| 245 |
241 244
|
eqtrd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( ( cos ` x ) x. ( cos ` x ) ) ) = ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) ) |
| 246 |
78 243
|
mulcomd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
| 247 |
246
|
oveq2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N x. ( ( ( sin ` x ) ^ ( N - 1 ) ) x. ( ( cos ` x ) ^ 2 ) ) ) = ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
| 248 |
236 245 247
|
3eqtrd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
| 249 |
248
|
negeqd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> -u ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) = -u ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
| 250 |
82 81
|
mulneg2d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) = -u ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. ( cos ` x ) ) ) |
| 251 |
243 78
|
mulcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 252 |
73 251
|
mulneg1d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) = -u ( N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
| 253 |
249 250 252
|
3eqtr4d |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) = ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) ) |
| 254 |
253
|
itgeq2dv |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = S. ( 0 (,) _pi ) ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) _d x ) |
| 255 |
59
|
negcld |
|- ( ph -> -u N e. CC ) |
| 256 |
43
|
sqcld |
|- ( x e. ( 0 [,] _pi ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 257 |
256
|
adantl |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 258 |
257 109
|
mulcld |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) |
| 259 |
6
|
fvmpt2 |
|- ( ( x e. CC /\ ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) e. CC ) -> ( M ` x ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
| 260 |
23 258 259
|
syl2anc |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( M ` x ) = ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
| 261 |
260
|
eqcomd |
|- ( ( ph /\ x e. ( 0 [,] _pi ) ) -> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) = ( M ` x ) ) |
| 262 |
261
|
mpteq2dva |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) = ( x e. ( 0 [,] _pi ) |-> ( M ` x ) ) ) |
| 263 |
|
nfmpt1 |
|- F/_ x ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) |
| 264 |
6 263
|
nfcxfr |
|- F/_ x M |
| 265 |
|
nfcv |
|- F/_ x cos |
| 266 |
|
2nn0 |
|- 2 e. NN0 |
| 267 |
266
|
a1i |
|- ( ph -> 2 e. NN0 ) |
| 268 |
265 53 267
|
expcnfg |
|- ( ph -> ( x e. CC |-> ( ( cos ` x ) ^ 2 ) ) e. ( CC -cn-> CC ) ) |
| 269 |
268 63
|
mulcncf |
|- ( ph -> ( x e. CC |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( CC -cn-> CC ) ) |
| 270 |
6 269
|
eqeltrid |
|- ( ph -> M e. ( CC -cn-> CC ) ) |
| 271 |
264 270 40
|
cncfmptss |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( M ` x ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 272 |
262 271
|
eqeltrd |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) |
| 273 |
|
cniccibl |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. ( ( 0 [,] _pi ) -cn-> CC ) ) -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 ) |
| 274 |
11 13 272 273
|
syl3anc |
|- ( ph -> ( x e. ( 0 [,] _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 ) |
| 275 |
86 88 258 274
|
iblss |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) e. L^1 ) |
| 276 |
255 251 275
|
itgmulc2 |
|- ( ph -> ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = S. ( 0 (,) _pi ) ( -u N x. ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) ) _d x ) |
| 277 |
254 276
|
eqtr4d |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 278 |
277
|
negeqd |
|- ( ph -> -u S. ( 0 (,) _pi ) ( ( ( N x. ( ( sin ` x ) ^ ( N - 1 ) ) ) x. ( cos ` x ) ) x. -u ( cos ` x ) ) _d x = -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 279 |
235 278
|
eqtrd |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 280 |
251 275
|
itgcl |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x e. CC ) |
| 281 |
59 280
|
mulneg1d |
|- ( ph -> ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 282 |
281
|
negeqd |
|- ( ph -> -u ( -u N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = -u -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 283 |
59 280
|
mulcld |
|- ( ph -> ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) e. CC ) |
| 284 |
283
|
negnegd |
|- ( ph -> -u -u ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) = ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |
| 285 |
279 282 284
|
3eqtrd |
|- ( ph -> S. ( 0 (,) _pi ) ( ( ( sin ` x ) ^ N ) x. ( sin ` x ) ) _d x = ( N x. S. ( 0 (,) _pi ) ( ( ( cos ` x ) ^ 2 ) x. ( ( sin ` x ) ^ ( N - 1 ) ) ) _d x ) ) |