Metamath Proof Explorer


Theorem wallispilem2

Description: A first set of properties for the sequence I that will be used in the proof of the Wallis product formula. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypothesis wallispilem2.1 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 )
Assertion wallispilem2 ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝐼𝑁 ) = ( ( ( 𝑁 − 1 ) / 𝑁 ) · ( 𝐼 ‘ ( 𝑁 − 2 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 wallispilem2.1 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 )
2 0nn0 0 ∈ ℕ0
3 oveq2 ( 𝑛 = 0 → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 0 ) )
4 3 adantr ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 0 ) )
5 ioosscn ( 0 (,) π ) ⊆ ℂ
6 5 sseli ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 ∈ ℂ )
7 6 sincld ( 𝑥 ∈ ( 0 (,) π ) → ( sin ‘ 𝑥 ) ∈ ℂ )
8 7 adantl ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( sin ‘ 𝑥 ) ∈ ℂ )
9 8 exp0d ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 0 ) = 1 )
10 4 9 eqtrd ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = 1 )
11 10 itgeq2dv ( 𝑛 = 0 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = ∫ ( 0 (,) π ) 1 d 𝑥 )
12 ioombl ( 0 (,) π ) ∈ dom vol
13 0re 0 ∈ ℝ
14 pire π ∈ ℝ
15 ioovolcl ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( vol ‘ ( 0 (,) π ) ) ∈ ℝ )
16 13 14 15 mp2an ( vol ‘ ( 0 (,) π ) ) ∈ ℝ
17 ax-1cn 1 ∈ ℂ
18 itgconst ( ( ( 0 (,) π ) ∈ dom vol ∧ ( vol ‘ ( 0 (,) π ) ) ∈ ℝ ∧ 1 ∈ ℂ ) → ∫ ( 0 (,) π ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) π ) ) ) )
19 12 16 17 18 mp3an ∫ ( 0 (,) π ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) π ) ) )
20 16 recni ( vol ‘ ( 0 (,) π ) ) ∈ ℂ
21 20 mulid2i ( 1 · ( vol ‘ ( 0 (,) π ) ) ) = ( vol ‘ ( 0 (,) π ) )
22 pipos 0 < π
23 13 14 22 ltleii 0 ≤ π
24 volioo ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π ) → ( vol ‘ ( 0 (,) π ) ) = ( π − 0 ) )
25 13 14 23 24 mp3an ( vol ‘ ( 0 (,) π ) ) = ( π − 0 )
26 14 recni π ∈ ℂ
27 26 subid1i ( π − 0 ) = π
28 25 27 eqtri ( vol ‘ ( 0 (,) π ) ) = π
29 21 28 eqtri ( 1 · ( vol ‘ ( 0 (,) π ) ) ) = π
30 19 29 eqtri ∫ ( 0 (,) π ) 1 d 𝑥 = π
31 11 30 eqtrdi ( 𝑛 = 0 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = π )
32 14 elexi π ∈ V
33 31 1 32 fvmpt ( 0 ∈ ℕ0 → ( 𝐼 ‘ 0 ) = π )
34 2 33 ax-mp ( 𝐼 ‘ 0 ) = π
35 1nn0 1 ∈ ℕ0
36 simpl ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → 𝑛 = 1 )
37 36 oveq2d ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 1 ) )
38 7 adantl ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( sin ‘ 𝑥 ) ∈ ℂ )
39 38 exp1d ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 1 ) = ( sin ‘ 𝑥 ) )
40 37 39 eqtrd ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( sin ‘ 𝑥 ) )
41 40 itgeq2dv ( 𝑛 = 1 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 )
42 itgex ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 ∈ V
43 41 1 42 fvmpt ( 1 ∈ ℕ0 → ( 𝐼 ‘ 1 ) = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 )
44 35 43 ax-mp ( 𝐼 ‘ 1 ) = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥
45 itgsin0pi ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 = 2
46 44 45 eqtri ( 𝐼 ‘ 1 ) = 2
47 id ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ∈ ( ℤ ‘ 2 ) )
48 1 47 itgsinexp ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝐼𝑁 ) = ( ( ( 𝑁 − 1 ) / 𝑁 ) · ( 𝐼 ‘ ( 𝑁 − 2 ) ) ) )
49 34 46 48 3pm3.2i ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝐼𝑁 ) = ( ( ( 𝑁 − 1 ) / 𝑁 ) · ( 𝐼 ‘ ( 𝑁 − 2 ) ) ) ) )