| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wallispilem2.1 | ⊢ 𝐼  =  ( 𝑛  ∈  ℕ0  ↦  ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  d 𝑥 ) | 
						
							| 2 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑛  =  0  →  ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  =  ( ( sin ‘ 𝑥 ) ↑ 0 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑛  =  0  ∧  𝑥  ∈  ( 0 (,) π ) )  →  ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  =  ( ( sin ‘ 𝑥 ) ↑ 0 ) ) | 
						
							| 5 |  | ioosscn | ⊢ ( 0 (,) π )  ⊆  ℂ | 
						
							| 6 | 5 | sseli | ⊢ ( 𝑥  ∈  ( 0 (,) π )  →  𝑥  ∈  ℂ ) | 
						
							| 7 | 6 | sincld | ⊢ ( 𝑥  ∈  ( 0 (,) π )  →  ( sin ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑛  =  0  ∧  𝑥  ∈  ( 0 (,) π ) )  →  ( sin ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 9 | 8 | exp0d | ⊢ ( ( 𝑛  =  0  ∧  𝑥  ∈  ( 0 (,) π ) )  →  ( ( sin ‘ 𝑥 ) ↑ 0 )  =  1 ) | 
						
							| 10 | 4 9 | eqtrd | ⊢ ( ( 𝑛  =  0  ∧  𝑥  ∈  ( 0 (,) π ) )  →  ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  =  1 ) | 
						
							| 11 | 10 | itgeq2dv | ⊢ ( 𝑛  =  0  →  ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  d 𝑥  =  ∫ ( 0 (,) π ) 1  d 𝑥 ) | 
						
							| 12 |  | ioombl | ⊢ ( 0 (,) π )  ∈  dom  vol | 
						
							| 13 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 14 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 15 |  | ioovolcl | ⊢ ( ( 0  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( vol ‘ ( 0 (,) π ) )  ∈  ℝ ) | 
						
							| 16 | 13 14 15 | mp2an | ⊢ ( vol ‘ ( 0 (,) π ) )  ∈  ℝ | 
						
							| 17 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 18 |  | itgconst | ⊢ ( ( ( 0 (,) π )  ∈  dom  vol  ∧  ( vol ‘ ( 0 (,) π ) )  ∈  ℝ  ∧  1  ∈  ℂ )  →  ∫ ( 0 (,) π ) 1  d 𝑥  =  ( 1  ·  ( vol ‘ ( 0 (,) π ) ) ) ) | 
						
							| 19 | 12 16 17 18 | mp3an | ⊢ ∫ ( 0 (,) π ) 1  d 𝑥  =  ( 1  ·  ( vol ‘ ( 0 (,) π ) ) ) | 
						
							| 20 | 16 | recni | ⊢ ( vol ‘ ( 0 (,) π ) )  ∈  ℂ | 
						
							| 21 | 20 | mullidi | ⊢ ( 1  ·  ( vol ‘ ( 0 (,) π ) ) )  =  ( vol ‘ ( 0 (,) π ) ) | 
						
							| 22 |  | pipos | ⊢ 0  <  π | 
						
							| 23 | 13 14 22 | ltleii | ⊢ 0  ≤  π | 
						
							| 24 |  | volioo | ⊢ ( ( 0  ∈  ℝ  ∧  π  ∈  ℝ  ∧  0  ≤  π )  →  ( vol ‘ ( 0 (,) π ) )  =  ( π  −  0 ) ) | 
						
							| 25 | 13 14 23 24 | mp3an | ⊢ ( vol ‘ ( 0 (,) π ) )  =  ( π  −  0 ) | 
						
							| 26 | 14 | recni | ⊢ π  ∈  ℂ | 
						
							| 27 | 26 | subid1i | ⊢ ( π  −  0 )  =  π | 
						
							| 28 | 25 27 | eqtri | ⊢ ( vol ‘ ( 0 (,) π ) )  =  π | 
						
							| 29 | 21 28 | eqtri | ⊢ ( 1  ·  ( vol ‘ ( 0 (,) π ) ) )  =  π | 
						
							| 30 | 19 29 | eqtri | ⊢ ∫ ( 0 (,) π ) 1  d 𝑥  =  π | 
						
							| 31 | 11 30 | eqtrdi | ⊢ ( 𝑛  =  0  →  ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  d 𝑥  =  π ) | 
						
							| 32 | 14 | elexi | ⊢ π  ∈  V | 
						
							| 33 | 31 1 32 | fvmpt | ⊢ ( 0  ∈  ℕ0  →  ( 𝐼 ‘ 0 )  =  π ) | 
						
							| 34 | 2 33 | ax-mp | ⊢ ( 𝐼 ‘ 0 )  =  π | 
						
							| 35 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 36 |  | simpl | ⊢ ( ( 𝑛  =  1  ∧  𝑥  ∈  ( 0 (,) π ) )  →  𝑛  =  1 ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( 𝑛  =  1  ∧  𝑥  ∈  ( 0 (,) π ) )  →  ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  =  ( ( sin ‘ 𝑥 ) ↑ 1 ) ) | 
						
							| 38 | 7 | adantl | ⊢ ( ( 𝑛  =  1  ∧  𝑥  ∈  ( 0 (,) π ) )  →  ( sin ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 39 | 38 | exp1d | ⊢ ( ( 𝑛  =  1  ∧  𝑥  ∈  ( 0 (,) π ) )  →  ( ( sin ‘ 𝑥 ) ↑ 1 )  =  ( sin ‘ 𝑥 ) ) | 
						
							| 40 | 37 39 | eqtrd | ⊢ ( ( 𝑛  =  1  ∧  𝑥  ∈  ( 0 (,) π ) )  →  ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  =  ( sin ‘ 𝑥 ) ) | 
						
							| 41 | 40 | itgeq2dv | ⊢ ( 𝑛  =  1  →  ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  d 𝑥  =  ∫ ( 0 (,) π ) ( sin ‘ 𝑥 )  d 𝑥 ) | 
						
							| 42 |  | itgex | ⊢ ∫ ( 0 (,) π ) ( sin ‘ 𝑥 )  d 𝑥  ∈  V | 
						
							| 43 | 41 1 42 | fvmpt | ⊢ ( 1  ∈  ℕ0  →  ( 𝐼 ‘ 1 )  =  ∫ ( 0 (,) π ) ( sin ‘ 𝑥 )  d 𝑥 ) | 
						
							| 44 | 35 43 | ax-mp | ⊢ ( 𝐼 ‘ 1 )  =  ∫ ( 0 (,) π ) ( sin ‘ 𝑥 )  d 𝑥 | 
						
							| 45 |  | itgsin0pi | ⊢ ∫ ( 0 (,) π ) ( sin ‘ 𝑥 )  d 𝑥  =  2 | 
						
							| 46 | 44 45 | eqtri | ⊢ ( 𝐼 ‘ 1 )  =  2 | 
						
							| 47 |  | id | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 48 | 1 47 | itgsinexp | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐼 ‘ 𝑁 )  =  ( ( ( 𝑁  −  1 )  /  𝑁 )  ·  ( 𝐼 ‘ ( 𝑁  −  2 ) ) ) ) | 
						
							| 49 | 34 46 48 | 3pm3.2i | ⊢ ( ( 𝐼 ‘ 0 )  =  π  ∧  ( 𝐼 ‘ 1 )  =  2  ∧  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐼 ‘ 𝑁 )  =  ( ( ( 𝑁  −  1 )  /  𝑁 )  ·  ( 𝐼 ‘ ( 𝑁  −  2 ) ) ) ) ) |