Step |
Hyp |
Ref |
Expression |
1 |
|
wallispilem2.1 |
⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) |
2 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
3 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 0 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 0 ) ) |
5 |
|
ioosscn |
⊢ ( 0 (,) π ) ⊆ ℂ |
6 |
5
|
sseli |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 ∈ ℂ ) |
7 |
6
|
sincld |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
8 |
7
|
adantl |
⊢ ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
9 |
8
|
exp0d |
⊢ ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 0 ) = 1 ) |
10 |
4 9
|
eqtrd |
⊢ ( ( 𝑛 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = 1 ) |
11 |
10
|
itgeq2dv |
⊢ ( 𝑛 = 0 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = ∫ ( 0 (,) π ) 1 d 𝑥 ) |
12 |
|
ioombl |
⊢ ( 0 (,) π ) ∈ dom vol |
13 |
|
0re |
⊢ 0 ∈ ℝ |
14 |
|
pire |
⊢ π ∈ ℝ |
15 |
|
ioovolcl |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( vol ‘ ( 0 (,) π ) ) ∈ ℝ ) |
16 |
13 14 15
|
mp2an |
⊢ ( vol ‘ ( 0 (,) π ) ) ∈ ℝ |
17 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
18 |
|
itgconst |
⊢ ( ( ( 0 (,) π ) ∈ dom vol ∧ ( vol ‘ ( 0 (,) π ) ) ∈ ℝ ∧ 1 ∈ ℂ ) → ∫ ( 0 (,) π ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) π ) ) ) ) |
19 |
12 16 17 18
|
mp3an |
⊢ ∫ ( 0 (,) π ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) π ) ) ) |
20 |
16
|
recni |
⊢ ( vol ‘ ( 0 (,) π ) ) ∈ ℂ |
21 |
20
|
mulid2i |
⊢ ( 1 · ( vol ‘ ( 0 (,) π ) ) ) = ( vol ‘ ( 0 (,) π ) ) |
22 |
|
pipos |
⊢ 0 < π |
23 |
13 14 22
|
ltleii |
⊢ 0 ≤ π |
24 |
|
volioo |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π ) → ( vol ‘ ( 0 (,) π ) ) = ( π − 0 ) ) |
25 |
13 14 23 24
|
mp3an |
⊢ ( vol ‘ ( 0 (,) π ) ) = ( π − 0 ) |
26 |
14
|
recni |
⊢ π ∈ ℂ |
27 |
26
|
subid1i |
⊢ ( π − 0 ) = π |
28 |
25 27
|
eqtri |
⊢ ( vol ‘ ( 0 (,) π ) ) = π |
29 |
21 28
|
eqtri |
⊢ ( 1 · ( vol ‘ ( 0 (,) π ) ) ) = π |
30 |
19 29
|
eqtri |
⊢ ∫ ( 0 (,) π ) 1 d 𝑥 = π |
31 |
11 30
|
eqtrdi |
⊢ ( 𝑛 = 0 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = π ) |
32 |
14
|
elexi |
⊢ π ∈ V |
33 |
31 1 32
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( 𝐼 ‘ 0 ) = π ) |
34 |
2 33
|
ax-mp |
⊢ ( 𝐼 ‘ 0 ) = π |
35 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
36 |
|
simpl |
⊢ ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → 𝑛 = 1 ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( ( sin ‘ 𝑥 ) ↑ 1 ) ) |
38 |
7
|
adantl |
⊢ ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( sin ‘ 𝑥 ) ∈ ℂ ) |
39 |
38
|
exp1d |
⊢ ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 1 ) = ( sin ‘ 𝑥 ) ) |
40 |
37 39
|
eqtrd |
⊢ ( ( 𝑛 = 1 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) = ( sin ‘ 𝑥 ) ) |
41 |
40
|
itgeq2dv |
⊢ ( 𝑛 = 1 → ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 ) |
42 |
|
itgex |
⊢ ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 ∈ V |
43 |
41 1 42
|
fvmpt |
⊢ ( 1 ∈ ℕ0 → ( 𝐼 ‘ 1 ) = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 ) |
44 |
35 43
|
ax-mp |
⊢ ( 𝐼 ‘ 1 ) = ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 |
45 |
|
itgsin0pi |
⊢ ∫ ( 0 (,) π ) ( sin ‘ 𝑥 ) d 𝑥 = 2 |
46 |
44 45
|
eqtri |
⊢ ( 𝐼 ‘ 1 ) = 2 |
47 |
|
id |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
48 |
1 47
|
itgsinexp |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑁 ) = ( ( ( 𝑁 − 1 ) / 𝑁 ) · ( 𝐼 ‘ ( 𝑁 − 2 ) ) ) ) |
49 |
34 46 48
|
3pm3.2i |
⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑁 ) = ( ( ( 𝑁 − 1 ) / 𝑁 ) · ( 𝐼 ‘ ( 𝑁 − 2 ) ) ) ) ) |