| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wallispilem3.1 |
⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 ) d 𝑥 ) |
| 2 |
|
breq2 |
⊢ ( 𝑤 = 0 → ( 𝑚 ≤ 𝑤 ↔ 𝑚 ≤ 0 ) ) |
| 3 |
2
|
imbi1d |
⊢ ( 𝑤 = 0 → ( ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑚 ≤ 0 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 4 |
3
|
ralbidv |
⊢ ( 𝑤 = 0 → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 0 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 5 |
|
breq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑚 ≤ 𝑤 ↔ 𝑚 ≤ 𝑦 ) ) |
| 6 |
5
|
imbi1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 8 |
|
breq2 |
⊢ ( 𝑤 = ( 𝑦 + 1 ) → ( 𝑚 ≤ 𝑤 ↔ 𝑚 ≤ ( 𝑦 + 1 ) ) ) |
| 9 |
8
|
imbi1d |
⊢ ( 𝑤 = ( 𝑦 + 1 ) → ( ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑚 ≤ ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑤 = ( 𝑦 + 1 ) → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 11 |
|
breq2 |
⊢ ( 𝑤 = 𝑁 → ( 𝑚 ≤ 𝑤 ↔ 𝑚 ≤ 𝑁 ) ) |
| 12 |
11
|
imbi1d |
⊢ ( 𝑤 = 𝑁 → ( ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 13 |
12
|
ralbidv |
⊢ ( 𝑤 = 𝑁 → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑤 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → 𝑚 ≤ 0 ) |
| 15 |
|
nn0ge0 |
⊢ ( 𝑚 ∈ ℕ0 → 0 ≤ 𝑚 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → 0 ≤ 𝑚 ) |
| 17 |
|
nn0re |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → 𝑚 ∈ ℝ ) |
| 19 |
|
0red |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → 0 ∈ ℝ ) |
| 20 |
18 19
|
letri3d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → ( 𝑚 = 0 ↔ ( 𝑚 ≤ 0 ∧ 0 ≤ 𝑚 ) ) ) |
| 21 |
14 16 20
|
mpbir2and |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → 𝑚 = 0 ) |
| 22 |
21
|
fveq2d |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → ( 𝐼 ‘ 𝑚 ) = ( 𝐼 ‘ 0 ) ) |
| 23 |
1
|
wallispilem2 |
⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑚 ) = ( ( ( 𝑚 − 1 ) / 𝑚 ) · ( 𝐼 ‘ ( 𝑚 − 2 ) ) ) ) ) |
| 24 |
23
|
simp1i |
⊢ ( 𝐼 ‘ 0 ) = π |
| 25 |
|
pirp |
⊢ π ∈ ℝ+ |
| 26 |
24 25
|
eqeltri |
⊢ ( 𝐼 ‘ 0 ) ∈ ℝ+ |
| 27 |
22 26
|
eqeltrdi |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ 0 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 28 |
27
|
ex |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 ≤ 0 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 29 |
28
|
rgen |
⊢ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 0 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 30 |
|
nfv |
⊢ Ⅎ 𝑚 𝑦 ∈ ℕ0 |
| 31 |
|
nfra1 |
⊢ Ⅎ 𝑚 ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 32 |
30 31
|
nfan |
⊢ Ⅎ 𝑚 ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 33 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 34 |
|
simplr |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑚 ∈ ℕ0 ) |
| 35 |
|
rsp |
⊢ ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) → ( 𝑚 ∈ ℕ0 → ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 36 |
33 34 35
|
sylc |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝑚 = 1 → ( 𝐼 ‘ 𝑚 ) = ( 𝐼 ‘ 1 ) ) |
| 38 |
23
|
simp2i |
⊢ ( 𝐼 ‘ 1 ) = 2 |
| 39 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 40 |
38 39
|
eqeltri |
⊢ ( 𝐼 ‘ 1 ) ∈ ℝ+ |
| 41 |
37 40
|
eqeltrdi |
⊢ ( 𝑚 = 1 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 42 |
41
|
a1i |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑚 = 1 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 43 |
23
|
simp3i |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑚 ) = ( ( ( 𝑚 − 1 ) / 𝑚 ) · ( 𝐼 ‘ ( 𝑚 − 2 ) ) ) ) |
| 44 |
43
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐼 ‘ 𝑚 ) = ( ( ( 𝑚 − 1 ) / 𝑚 ) · ( 𝐼 ‘ ( 𝑚 − 2 ) ) ) ) |
| 45 |
|
eluz2nn |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 𝑚 ∈ ℕ ) |
| 46 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
| 47 |
|
1red |
⊢ ( 𝑚 ∈ ℕ → 1 ∈ ℝ ) |
| 48 |
46 47
|
resubcld |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 − 1 ) ∈ ℝ ) |
| 49 |
45 48
|
syl |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑚 − 1 ) ∈ ℝ ) |
| 50 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 51 |
|
1red |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) |
| 52 |
|
eluzelre |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 𝑚 ∈ ℝ ) |
| 53 |
|
eluz2b2 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑚 ∈ ℕ ∧ 1 < 𝑚 ) ) |
| 54 |
53
|
simprbi |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑚 ) |
| 55 |
51 52 51 54
|
ltsub1dd |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 1 − 1 ) < ( 𝑚 − 1 ) ) |
| 56 |
50 55
|
eqbrtrrid |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 0 < ( 𝑚 − 1 ) ) |
| 57 |
49 56
|
elrpd |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑚 − 1 ) ∈ ℝ+ ) |
| 58 |
45
|
nnrpd |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → 𝑚 ∈ ℝ+ ) |
| 59 |
57 58
|
rpdivcld |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑚 − 1 ) / 𝑚 ) ∈ ℝ+ ) |
| 60 |
59
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑚 − 1 ) / 𝑚 ) ∈ ℝ+ ) |
| 61 |
|
breq1 |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 ≤ 𝑦 ↔ 𝑘 ≤ 𝑦 ) ) |
| 62 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝐼 ‘ 𝑚 ) = ( 𝐼 ‘ 𝑘 ) ) |
| 63 |
62
|
eleq1d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ↔ ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ) |
| 64 |
61 63
|
imbi12d |
⊢ ( 𝑚 = 𝑘 → ( ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ) ) |
| 65 |
64
|
cbvralvw |
⊢ ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ∀ 𝑘 ∈ ℕ0 ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ) |
| 66 |
65
|
biimpi |
⊢ ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) → ∀ 𝑘 ∈ ℕ0 ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ) |
| 67 |
66
|
ad3antlr |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ) |
| 68 |
|
uznn0sub |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑚 − 2 ) ∈ ℕ0 ) |
| 69 |
68
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑚 − 2 ) ∈ ℕ0 ) |
| 70 |
67 69
|
jca |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ∧ ( 𝑚 − 2 ) ∈ ℕ0 ) ) |
| 71 |
|
simplll |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑦 ∈ ℕ0 ) |
| 72 |
|
simplr |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑚 = ( 𝑦 + 1 ) ) |
| 73 |
|
simpr |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) |
| 74 |
|
simp2 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑚 = ( 𝑦 + 1 ) ) |
| 75 |
74
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑚 − 2 ) = ( ( 𝑦 + 1 ) − 2 ) ) |
| 76 |
|
nn0re |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) |
| 77 |
76
|
3ad2ant1 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑦 ∈ ℝ ) |
| 78 |
77
|
recnd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑦 ∈ ℂ ) |
| 79 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 80 |
79
|
a1i |
⊢ ( 𝑦 ∈ ℂ → 2 = ( 1 + 1 ) ) |
| 81 |
80
|
oveq2d |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 + 1 ) − 2 ) = ( ( 𝑦 + 1 ) − ( 1 + 1 ) ) ) |
| 82 |
|
id |
⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) |
| 83 |
|
1cnd |
⊢ ( 𝑦 ∈ ℂ → 1 ∈ ℂ ) |
| 84 |
82 83 83
|
pnpcan2d |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 + 1 ) − ( 1 + 1 ) ) = ( 𝑦 − 1 ) ) |
| 85 |
81 84
|
eqtrd |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 + 1 ) − 2 ) = ( 𝑦 − 1 ) ) |
| 86 |
78 85
|
syl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑦 + 1 ) − 2 ) = ( 𝑦 − 1 ) ) |
| 87 |
75 86
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑚 − 2 ) = ( 𝑦 − 1 ) ) |
| 88 |
77
|
lem1d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑦 − 1 ) ≤ 𝑦 ) |
| 89 |
87 88
|
eqbrtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑚 − 2 ) ≤ 𝑦 ) |
| 90 |
71 72 73 89
|
syl3anc |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑚 − 2 ) ≤ 𝑦 ) |
| 91 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑚 − 2 ) → ( 𝑘 ≤ 𝑦 ↔ ( 𝑚 − 2 ) ≤ 𝑦 ) ) |
| 92 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑚 − 2 ) → ( 𝐼 ‘ 𝑘 ) = ( 𝐼 ‘ ( 𝑚 − 2 ) ) ) |
| 93 |
92
|
eleq1d |
⊢ ( 𝑘 = ( 𝑚 − 2 ) → ( ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ↔ ( 𝐼 ‘ ( 𝑚 − 2 ) ) ∈ ℝ+ ) ) |
| 94 |
91 93
|
imbi12d |
⊢ ( 𝑘 = ( 𝑚 − 2 ) → ( ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ↔ ( ( 𝑚 − 2 ) ≤ 𝑦 → ( 𝐼 ‘ ( 𝑚 − 2 ) ) ∈ ℝ+ ) ) ) |
| 95 |
94
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℕ0 ( 𝑘 ≤ 𝑦 → ( 𝐼 ‘ 𝑘 ) ∈ ℝ+ ) ∧ ( 𝑚 − 2 ) ∈ ℕ0 ) → ( ( 𝑚 − 2 ) ≤ 𝑦 → ( 𝐼 ‘ ( 𝑚 − 2 ) ) ∈ ℝ+ ) ) |
| 96 |
70 90 95
|
sylc |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐼 ‘ ( 𝑚 − 2 ) ) ∈ ℝ+ ) |
| 97 |
60 96
|
rpmulcld |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝑚 − 1 ) / 𝑚 ) · ( 𝐼 ‘ ( 𝑚 − 2 ) ) ) ∈ ℝ+ ) |
| 98 |
44 97
|
eqeltrd |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 99 |
98
|
adantllr |
⊢ ( ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 100 |
99
|
ex |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑚 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 101 |
|
simplll |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑦 ∈ ℕ0 ) |
| 102 |
|
simplr |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 ∈ ℕ0 ) |
| 103 |
|
simpr |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 = ( 𝑦 + 1 ) ) |
| 104 |
|
simp3 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 = ( 𝑦 + 1 ) ) |
| 105 |
|
nn0p1nn |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ ) |
| 106 |
105
|
3ad2ant1 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑦 + 1 ) ∈ ℕ ) |
| 107 |
104 106
|
eqeltrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 ∈ ℕ ) |
| 108 |
|
elnnuz |
⊢ ( 𝑚 ∈ ℕ ↔ 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
| 109 |
107 108
|
sylib |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 1 ) ) |
| 110 |
|
uzp1 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) ) |
| 111 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 112 |
111
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 + 1 ) ) = ( ℤ≥ ‘ 2 ) |
| 113 |
112
|
eleq2i |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ↔ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) |
| 114 |
113
|
orbi2i |
⊢ ( ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) ↔ ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 115 |
110 114
|
sylib |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 116 |
109 115
|
syl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 117 |
101 102 103 116
|
syl3anc |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑚 = 1 ∨ 𝑚 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 118 |
42 100 117
|
mpjaod |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 119 |
118
|
adantlr |
⊢ ( ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 120 |
119
|
ex |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 = ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 121 |
|
simplll |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑦 ∈ ℕ0 ) |
| 122 |
|
simpr |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑚 ≤ ( 𝑦 + 1 ) ) |
| 123 |
|
simpl1 |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑦 ∈ ℕ0 ) |
| 124 |
|
simpl2 |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 ∈ ℕ0 ) |
| 125 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 < ( 𝑦 + 1 ) ) |
| 126 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = 0 ) → 𝑚 = 0 ) |
| 127 |
|
nn0ge0 |
⊢ ( 𝑦 ∈ ℕ0 → 0 ≤ 𝑦 ) |
| 128 |
127
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = 0 ) → 0 ≤ 𝑦 ) |
| 129 |
126 128
|
eqbrtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 = 0 ) → 𝑚 ≤ 𝑦 ) |
| 130 |
129
|
3ad2antl1 |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) ∧ 𝑚 = 0 ) → 𝑚 ≤ 𝑦 ) |
| 131 |
|
simpl1 |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ℕ ) → 𝑦 ∈ ℕ0 ) |
| 132 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℕ ) |
| 133 |
|
simpl3 |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ℕ ) → 𝑚 < ( 𝑦 + 1 ) ) |
| 134 |
|
simp3 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 < ( 𝑦 + 1 ) ) |
| 135 |
|
simp2 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 ∈ ℕ ) |
| 136 |
|
simp1 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑦 ∈ ℕ0 ) |
| 137 |
|
0red |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 0 ∈ ℝ ) |
| 138 |
48
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 − 1 ) ∈ ℝ ) |
| 139 |
76
|
3ad2ant1 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑦 ∈ ℝ ) |
| 140 |
|
nnm1ge0 |
⊢ ( 𝑚 ∈ ℕ → 0 ≤ ( 𝑚 − 1 ) ) |
| 141 |
140
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 0 ≤ ( 𝑚 − 1 ) ) |
| 142 |
46
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 ∈ ℝ ) |
| 143 |
|
1red |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 1 ∈ ℝ ) |
| 144 |
142 143 139
|
ltsubaddd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( ( 𝑚 − 1 ) < 𝑦 ↔ 𝑚 < ( 𝑦 + 1 ) ) ) |
| 145 |
134 144
|
mpbird |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 − 1 ) < 𝑦 ) |
| 146 |
137 138 139 141 145
|
lelttrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 0 < 𝑦 ) |
| 147 |
146
|
gt0ne0d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑦 ≠ 0 ) |
| 148 |
|
elnnne0 |
⊢ ( 𝑦 ∈ ℕ ↔ ( 𝑦 ∈ ℕ0 ∧ 𝑦 ≠ 0 ) ) |
| 149 |
136 147 148
|
sylanbrc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑦 ∈ ℕ ) |
| 150 |
|
nnleltp1 |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑚 ≤ 𝑦 ↔ 𝑚 < ( 𝑦 + 1 ) ) ) |
| 151 |
135 149 150
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ↔ 𝑚 < ( 𝑦 + 1 ) ) ) |
| 152 |
134 151
|
mpbird |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 ≤ 𝑦 ) |
| 153 |
131 132 133 152
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ≤ 𝑦 ) |
| 154 |
|
elnn0 |
⊢ ( 𝑚 ∈ ℕ0 ↔ ( 𝑚 ∈ ℕ ∨ 𝑚 = 0 ) ) |
| 155 |
154
|
biimpi |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 ∈ ℕ ∨ 𝑚 = 0 ) ) |
| 156 |
155
|
orcomd |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 = 0 ∨ 𝑚 ∈ ℕ ) ) |
| 157 |
156
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 = 0 ∨ 𝑚 ∈ ℕ ) ) |
| 158 |
130 153 157
|
mpjaodan |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) → 𝑚 ≤ 𝑦 ) |
| 159 |
158
|
orcd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 160 |
123 124 125 159
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 < ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 161 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → 𝑚 = ( 𝑦 + 1 ) ) |
| 162 |
161
|
olcd |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) ∧ 𝑚 = ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 163 |
|
simp3 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑚 ≤ ( 𝑦 + 1 ) ) |
| 164 |
17
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑚 ∈ ℝ ) |
| 165 |
76
|
3ad2ant1 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 𝑦 ∈ ℝ ) |
| 166 |
|
1red |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → 1 ∈ ℝ ) |
| 167 |
165 166
|
readdcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑦 + 1 ) ∈ ℝ ) |
| 168 |
164 167
|
leloed |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 ≤ ( 𝑦 + 1 ) ↔ ( 𝑚 < ( 𝑦 + 1 ) ∨ 𝑚 = ( 𝑦 + 1 ) ) ) ) |
| 169 |
163 168
|
mpbid |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 < ( 𝑦 + 1 ) ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 170 |
160 162 169
|
mpjaodan |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 171 |
121 34 122 170
|
syl3anc |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝑚 ≤ 𝑦 ∨ 𝑚 = ( 𝑦 + 1 ) ) ) |
| 172 |
36 120 171
|
mpjaod |
⊢ ( ( ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ≤ ( 𝑦 + 1 ) ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) |
| 173 |
172
|
exp31 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) → ( 𝑚 ∈ ℕ0 → ( 𝑚 ≤ ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 174 |
32 173
|
ralrimi |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) → ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 175 |
174
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑦 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) → ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ ( 𝑦 + 1 ) → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) ) |
| 176 |
4 7 10 13 29 175
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ) |
| 177 |
176
|
ancri |
⊢ ( 𝑁 ∈ ℕ0 → ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ∧ 𝑁 ∈ ℕ0 ) ) |
| 178 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
| 179 |
178
|
leidd |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ≤ 𝑁 ) |
| 180 |
|
breq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 ≤ 𝑁 ↔ 𝑁 ≤ 𝑁 ) ) |
| 181 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐼 ‘ 𝑚 ) = ( 𝐼 ‘ 𝑁 ) ) |
| 182 |
181
|
eleq1d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ↔ ( 𝐼 ‘ 𝑁 ) ∈ ℝ+ ) ) |
| 183 |
180 182
|
imbi12d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ↔ ( 𝑁 ≤ 𝑁 → ( 𝐼 ‘ 𝑁 ) ∈ ℝ+ ) ) ) |
| 184 |
183
|
rspccva |
⊢ ( ( ∀ 𝑚 ∈ ℕ0 ( 𝑚 ≤ 𝑁 → ( 𝐼 ‘ 𝑚 ) ∈ ℝ+ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≤ 𝑁 → ( 𝐼 ‘ 𝑁 ) ∈ ℝ+ ) ) |
| 185 |
177 179 184
|
sylc |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐼 ‘ 𝑁 ) ∈ ℝ+ ) |