| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wallispilem4.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
| 2 |
|
wallispilem4.2 |
⊢ 𝐼 = ( 𝑛 ∈ ℕ0 ↦ ∫ ( 0 (,) π ) ( ( sin ‘ 𝑧 ) ↑ 𝑛 ) d 𝑧 ) |
| 3 |
|
wallispilem4.3 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 4 |
|
wallispilem4.4 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 2 · 𝑥 ) = ( 2 · 1 ) ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑥 = 1 → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · 1 ) ) ) |
| 7 |
5
|
fvoveq1d |
⊢ ( 𝑥 = 1 → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) |
| 8 |
6 7
|
oveq12d |
⊢ ( 𝑥 = 1 → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑥 = 1 → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) ) |
| 12 |
8 11
|
eqeq12d |
⊢ ( 𝑥 = 1 → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 2 · 𝑥 ) = ( 2 · 𝑦 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) |
| 15 |
13
|
fvoveq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) |
| 16 |
14 15
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) |
| 20 |
16 19
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 2 · 𝑥 ) = ( 2 · ( 𝑦 + 1 ) ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) ) |
| 23 |
21
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) |
| 24 |
22 23
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) |
| 26 |
25
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 28 |
24 27
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) ) |
| 29 |
|
oveq2 |
⊢ ( 𝑥 = 𝑛 → ( 2 · 𝑥 ) = ( 2 · 𝑛 ) ) |
| 30 |
29
|
fveq2d |
⊢ ( 𝑥 = 𝑛 → ( 𝐼 ‘ ( 2 · 𝑥 ) ) = ( 𝐼 ‘ ( 2 · 𝑛 ) ) ) |
| 31 |
29
|
fvoveq1d |
⊢ ( 𝑥 = 𝑛 → ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 32 |
30 31
|
oveq12d |
⊢ ( 𝑥 = 𝑛 → ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
| 33 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) = ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) = ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝑥 = 𝑛 → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 36 |
32 35
|
eqeq12d |
⊢ ( 𝑥 = 𝑛 → ( ( ( 𝐼 ‘ ( 2 · 𝑥 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑥 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑥 ) ) ) ↔ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) ) |
| 37 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 38 |
37
|
fveq2i |
⊢ ( 𝐼 ‘ ( 2 · 1 ) ) = ( 𝐼 ‘ 2 ) |
| 39 |
37
|
oveq1i |
⊢ ( ( 2 · 1 ) + 1 ) = ( 2 + 1 ) |
| 40 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 41 |
39 40
|
eqtri |
⊢ ( ( 2 · 1 ) + 1 ) = 3 |
| 42 |
41
|
fveq2i |
⊢ ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) = ( 𝐼 ‘ 3 ) |
| 43 |
38 42
|
oveq12i |
⊢ ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) = ( ( 𝐼 ‘ 2 ) / ( 𝐼 ‘ 3 ) ) |
| 44 |
|
2z |
⊢ 2 ∈ ℤ |
| 45 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
| 46 |
44 45
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
| 47 |
2
|
wallispilem2 |
⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 2 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 2 ) = ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) ) ) |
| 48 |
47
|
simp3i |
⊢ ( 2 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 2 ) = ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) ) |
| 49 |
46 48
|
ax-mp |
⊢ ( 𝐼 ‘ 2 ) = ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) |
| 50 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 51 |
50
|
oveq1i |
⊢ ( ( 2 − 1 ) / 2 ) = ( 1 / 2 ) |
| 52 |
|
2cn |
⊢ 2 ∈ ℂ |
| 53 |
52
|
subidi |
⊢ ( 2 − 2 ) = 0 |
| 54 |
53
|
fveq2i |
⊢ ( 𝐼 ‘ ( 2 − 2 ) ) = ( 𝐼 ‘ 0 ) |
| 55 |
47
|
simp1i |
⊢ ( 𝐼 ‘ 0 ) = π |
| 56 |
54 55
|
eqtri |
⊢ ( 𝐼 ‘ ( 2 − 2 ) ) = π |
| 57 |
51 56
|
oveq12i |
⊢ ( ( ( 2 − 1 ) / 2 ) · ( 𝐼 ‘ ( 2 − 2 ) ) ) = ( ( 1 / 2 ) · π ) |
| 58 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 59 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 60 |
|
picn |
⊢ π ∈ ℂ |
| 61 |
|
div32 |
⊢ ( ( 1 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ π ∈ ℂ ) → ( ( 1 / 2 ) · π ) = ( 1 · ( π / 2 ) ) ) |
| 62 |
58 59 60 61
|
mp3an |
⊢ ( ( 1 / 2 ) · π ) = ( 1 · ( π / 2 ) ) |
| 63 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 64 |
60 52 63
|
divcli |
⊢ ( π / 2 ) ∈ ℂ |
| 65 |
64
|
mullidi |
⊢ ( 1 · ( π / 2 ) ) = ( π / 2 ) |
| 66 |
62 65
|
eqtri |
⊢ ( ( 1 / 2 ) · π ) = ( π / 2 ) |
| 67 |
49 57 66
|
3eqtri |
⊢ ( 𝐼 ‘ 2 ) = ( π / 2 ) |
| 68 |
|
3z |
⊢ 3 ∈ ℤ |
| 69 |
|
2re |
⊢ 2 ∈ ℝ |
| 70 |
|
3re |
⊢ 3 ∈ ℝ |
| 71 |
|
2lt3 |
⊢ 2 < 3 |
| 72 |
69 70 71
|
ltleii |
⊢ 2 ≤ 3 |
| 73 |
|
eluz2 |
⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3 ) ) |
| 74 |
44 68 72 73
|
mpbir3an |
⊢ 3 ∈ ( ℤ≥ ‘ 2 ) |
| 75 |
2
|
wallispilem2 |
⊢ ( ( 𝐼 ‘ 0 ) = π ∧ ( 𝐼 ‘ 1 ) = 2 ∧ ( 3 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 3 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) ) ) |
| 76 |
75
|
simp3i |
⊢ ( 3 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐼 ‘ 3 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) ) |
| 77 |
74 76
|
ax-mp |
⊢ ( 𝐼 ‘ 3 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) |
| 78 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 79 |
78
|
eqcomi |
⊢ 2 = ( 3 − 1 ) |
| 80 |
79
|
oveq1i |
⊢ ( 2 / 3 ) = ( ( 3 − 1 ) / 3 ) |
| 81 |
|
3cn |
⊢ 3 ∈ ℂ |
| 82 |
81 52 58 40
|
subaddrii |
⊢ ( 3 − 2 ) = 1 |
| 83 |
82
|
fveq2i |
⊢ ( 𝐼 ‘ ( 3 − 2 ) ) = ( 𝐼 ‘ 1 ) |
| 84 |
47
|
simp2i |
⊢ ( 𝐼 ‘ 1 ) = 2 |
| 85 |
83 84
|
eqtr2i |
⊢ 2 = ( 𝐼 ‘ ( 3 − 2 ) ) |
| 86 |
80 85
|
oveq12i |
⊢ ( ( 2 / 3 ) · 2 ) = ( ( ( 3 − 1 ) / 3 ) · ( 𝐼 ‘ ( 3 − 2 ) ) ) |
| 87 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 88 |
52 81 87
|
divcli |
⊢ ( 2 / 3 ) ∈ ℂ |
| 89 |
88 52
|
mulcomi |
⊢ ( ( 2 / 3 ) · 2 ) = ( 2 · ( 2 / 3 ) ) |
| 90 |
77 86 89
|
3eqtr2i |
⊢ ( 𝐼 ‘ 3 ) = ( 2 · ( 2 / 3 ) ) |
| 91 |
67 90
|
oveq12i |
⊢ ( ( 𝐼 ‘ 2 ) / ( 𝐼 ‘ 3 ) ) = ( ( π / 2 ) / ( 2 · ( 2 / 3 ) ) ) |
| 92 |
|
1z |
⊢ 1 ∈ ℤ |
| 93 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 94 |
92 93
|
ax-mp |
⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) |
| 95 |
|
1nn |
⊢ 1 ∈ ℕ |
| 96 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 2 · 𝑘 ) = ( 2 · 1 ) ) |
| 97 |
96 37
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( 2 · 𝑘 ) = 2 ) |
| 98 |
96
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 1 ) − 1 ) ) |
| 99 |
37
|
oveq1i |
⊢ ( ( 2 · 1 ) − 1 ) = ( 2 − 1 ) |
| 100 |
99 50
|
eqtri |
⊢ ( ( 2 · 1 ) − 1 ) = 1 |
| 101 |
98 100
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) − 1 ) = 1 ) |
| 102 |
97 101
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( 2 / 1 ) ) |
| 103 |
52
|
div1i |
⊢ ( 2 / 1 ) = 2 |
| 104 |
102 103
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = 2 ) |
| 105 |
97
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) + 1 ) = ( 2 + 1 ) ) |
| 106 |
105 40
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) + 1 ) = 3 ) |
| 107 |
97 106
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( 2 / 3 ) ) |
| 108 |
104 107
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( 2 · ( 2 / 3 ) ) ) |
| 109 |
|
ovex |
⊢ ( 2 · ( 2 / 3 ) ) ∈ V |
| 110 |
108 1 109
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( 𝐹 ‘ 1 ) = ( 2 · ( 2 / 3 ) ) ) |
| 111 |
95 110
|
ax-mp |
⊢ ( 𝐹 ‘ 1 ) = ( 2 · ( 2 / 3 ) ) |
| 112 |
94 111
|
eqtr2i |
⊢ ( 2 · ( 2 / 3 ) ) = ( seq 1 ( · , 𝐹 ) ‘ 1 ) |
| 113 |
112
|
oveq2i |
⊢ ( ( π / 2 ) / ( 2 · ( 2 / 3 ) ) ) = ( ( π / 2 ) / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) |
| 114 |
52 88
|
mulcli |
⊢ ( 2 · ( 2 / 3 ) ) ∈ ℂ |
| 115 |
111 114
|
eqeltri |
⊢ ( 𝐹 ‘ 1 ) ∈ ℂ |
| 116 |
94 115
|
eqeltri |
⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) ∈ ℂ |
| 117 |
52 81 63 87
|
divne0i |
⊢ ( 2 / 3 ) ≠ 0 |
| 118 |
52 88 63 117
|
mulne0i |
⊢ ( 2 · ( 2 / 3 ) ) ≠ 0 |
| 119 |
112 118
|
eqnetrri |
⊢ ( seq 1 ( · , 𝐹 ) ‘ 1 ) ≠ 0 |
| 120 |
64 116 119
|
divreci |
⊢ ( ( π / 2 ) / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 121 |
113 120
|
eqtri |
⊢ ( ( π / 2 ) / ( 2 · ( 2 / 3 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 122 |
43 91 121
|
3eqtri |
⊢ ( ( 𝐼 ‘ ( 2 · 1 ) ) / ( 𝐼 ‘ ( ( 2 · 1 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 1 ) ) ) |
| 123 |
|
oveq2 |
⊢ ( ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 124 |
123
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 125 |
|
2cnd |
⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℂ ) |
| 126 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
| 127 |
58
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 1 ∈ ℂ ) |
| 128 |
125 126 127
|
adddid |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) = ( ( 2 · 𝑦 ) + ( 2 · 1 ) ) ) |
| 129 |
125
|
mulridd |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 1 ) = 2 ) |
| 130 |
129
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑦 ) + 2 ) ) |
| 131 |
128 130
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) = ( ( 2 · 𝑦 ) + 2 ) ) |
| 132 |
131
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) = ( ( ( 2 · 𝑦 ) + 2 ) − 1 ) ) |
| 133 |
125 126
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℂ ) |
| 134 |
133 125 127
|
addsubassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 2 ) − 1 ) = ( ( 2 · 𝑦 ) + ( 2 − 1 ) ) ) |
| 135 |
50
|
a1i |
⊢ ( 𝑦 ∈ ℕ → ( 2 − 1 ) = 1 ) |
| 136 |
135
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 2 − 1 ) ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 137 |
132 134 136
|
3eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 138 |
137
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) = ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) ) |
| 139 |
138
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) = ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) ) |
| 140 |
78
|
a1i |
⊢ ( 𝑦 ∈ ℕ → ( 3 − 1 ) = 2 ) |
| 141 |
140
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 3 − 1 ) ) = ( ( 2 · 𝑦 ) + 2 ) ) |
| 142 |
81
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℂ ) |
| 143 |
133 142 127
|
addsubassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) = ( ( 2 · 𝑦 ) + ( 3 − 1 ) ) ) |
| 144 |
141 143 131
|
3eqtr4d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) = ( 2 · ( 𝑦 + 1 ) ) ) |
| 145 |
144
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 146 |
145
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) |
| 147 |
139 146
|
oveq12d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
| 148 |
44
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℤ ) |
| 149 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
| 150 |
149
|
peano2zd |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℤ ) |
| 151 |
148 150
|
zmulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℤ ) |
| 152 |
69
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℝ ) |
| 153 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
| 154 |
|
1red |
⊢ ( 𝑦 ∈ ℕ → 1 ∈ ℝ ) |
| 155 |
153 154
|
readdcld |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℝ ) |
| 156 |
|
0le2 |
⊢ 0 ≤ 2 |
| 157 |
156
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 0 ≤ 2 ) |
| 158 |
|
nnnn0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) |
| 159 |
158
|
nn0ge0d |
⊢ ( 𝑦 ∈ ℕ → 0 ≤ 𝑦 ) |
| 160 |
154 153
|
addge02d |
⊢ ( 𝑦 ∈ ℕ → ( 0 ≤ 𝑦 ↔ 1 ≤ ( 𝑦 + 1 ) ) ) |
| 161 |
159 160
|
mpbid |
⊢ ( 𝑦 ∈ ℕ → 1 ≤ ( 𝑦 + 1 ) ) |
| 162 |
152 155 157 161
|
lemulge11d |
⊢ ( 𝑦 ∈ ℕ → 2 ≤ ( 2 · ( 𝑦 + 1 ) ) ) |
| 163 |
44
|
eluz1i |
⊢ ( ( 2 · ( 𝑦 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( 2 · ( 𝑦 + 1 ) ) ∈ ℤ ∧ 2 ≤ ( 2 · ( 𝑦 + 1 ) ) ) ) |
| 164 |
151 162 163
|
sylanbrc |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 165 |
2 164
|
itgsinexp |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) = ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) ) ) ) |
| 166 |
131
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) = ( ( ( 2 · 𝑦 ) + 2 ) − 2 ) ) |
| 167 |
133 125
|
pncand |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 2 ) − 2 ) = ( 2 · 𝑦 ) ) |
| 168 |
166 167
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) = ( 2 · 𝑦 ) ) |
| 169 |
168
|
fveq2d |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) ) = ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) |
| 170 |
169
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) − 2 ) ) ) = ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) ) |
| 171 |
165 170
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) = ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) ) |
| 172 |
131
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) = ( ( ( 2 · 𝑦 ) + 2 ) + 1 ) ) |
| 173 |
133 125 127
|
addassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 2 ) + 1 ) = ( ( 2 · 𝑦 ) + ( 2 + 1 ) ) ) |
| 174 |
40
|
a1i |
⊢ ( 𝑦 ∈ ℕ → ( 2 + 1 ) = 3 ) |
| 175 |
174
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 2 + 1 ) ) = ( ( 2 · 𝑦 ) + 3 ) ) |
| 176 |
172 173 175
|
3eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) = ( ( 2 · 𝑦 ) + 3 ) ) |
| 177 |
176
|
fveq2d |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 178 |
148 149
|
zmulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℤ ) |
| 179 |
68
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℤ ) |
| 180 |
178 179
|
zaddcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℤ ) |
| 181 |
152 153
|
remulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℝ ) |
| 182 |
70
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℝ ) |
| 183 |
181 182
|
readdcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℝ ) |
| 184 |
|
nnge1 |
⊢ ( 𝑦 ∈ ℕ → 1 ≤ 𝑦 ) |
| 185 |
152 153 157 184
|
lemulge11d |
⊢ ( 𝑦 ∈ ℕ → 2 ≤ ( 2 · 𝑦 ) ) |
| 186 |
|
0re |
⊢ 0 ∈ ℝ |
| 187 |
|
3pos |
⊢ 0 < 3 |
| 188 |
186 70 187
|
ltleii |
⊢ 0 ≤ 3 |
| 189 |
181 182
|
addge01d |
⊢ ( 𝑦 ∈ ℕ → ( 0 ≤ 3 ↔ ( 2 · 𝑦 ) ≤ ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 190 |
188 189
|
mpbii |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ≤ ( ( 2 · 𝑦 ) + 3 ) ) |
| 191 |
152 181 183 185 190
|
letrd |
⊢ ( 𝑦 ∈ ℕ → 2 ≤ ( ( 2 · 𝑦 ) + 3 ) ) |
| 192 |
44
|
eluz1i |
⊢ ( ( ( 2 · 𝑦 ) + 3 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ( 2 · 𝑦 ) + 3 ) ∈ ℤ ∧ 2 ≤ ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 193 |
180 191 192
|
sylanbrc |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 194 |
2 193
|
itgsinexp |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 3 ) ) = ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) |
| 195 |
177 194
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) = ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) |
| 196 |
171 195
|
oveq12d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( ( ( 2 · 𝑦 ) + 3 ) − 1 ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
| 197 |
133 127
|
addcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 1 ) ∈ ℂ ) |
| 198 |
126 127
|
addcld |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℂ ) |
| 199 |
125 198
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℂ ) |
| 200 |
63
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 2 ≠ 0 ) |
| 201 |
|
peano2nn |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℕ ) |
| 202 |
201
|
nnne0d |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ≠ 0 ) |
| 203 |
125 198 200 202
|
mulne0d |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ≠ 0 ) |
| 204 |
197 199 203
|
divcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) ∈ ℂ ) |
| 205 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 206 |
205
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℕ0 ) |
| 207 |
206 158
|
nn0mulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℕ0 ) |
| 208 |
2
|
wallispilem3 |
⊢ ( ( 2 · 𝑦 ) ∈ ℕ0 → ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℝ+ ) |
| 209 |
208
|
rpcnd |
⊢ ( ( 2 · 𝑦 ) ∈ ℕ0 → ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℂ ) |
| 210 |
207 209
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℂ ) |
| 211 |
133 142
|
addcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℂ ) |
| 212 |
|
0red |
⊢ ( 𝑦 ∈ ℕ → 0 ∈ ℝ ) |
| 213 |
|
2pos |
⊢ 0 < 2 |
| 214 |
213
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 0 < 2 ) |
| 215 |
|
nngt0 |
⊢ ( 𝑦 ∈ ℕ → 0 < 𝑦 ) |
| 216 |
152 153 214 215
|
mulgt0d |
⊢ ( 𝑦 ∈ ℕ → 0 < ( 2 · 𝑦 ) ) |
| 217 |
182 187
|
jctir |
⊢ ( 𝑦 ∈ ℕ → ( 3 ∈ ℝ ∧ 0 < 3 ) ) |
| 218 |
|
elrp |
⊢ ( 3 ∈ ℝ+ ↔ ( 3 ∈ ℝ ∧ 0 < 3 ) ) |
| 219 |
217 218
|
sylibr |
⊢ ( 𝑦 ∈ ℕ → 3 ∈ ℝ+ ) |
| 220 |
181 219
|
ltaddrpd |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) < ( ( 2 · 𝑦 ) + 3 ) ) |
| 221 |
212 181 183 216 220
|
lttrd |
⊢ ( 𝑦 ∈ ℕ → 0 < ( ( 2 · 𝑦 ) + 3 ) ) |
| 222 |
221
|
gt0ne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ≠ 0 ) |
| 223 |
199 211 222
|
divcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ) |
| 224 |
199 211 203 222
|
divne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) |
| 225 |
180 148
|
zsubcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℤ ) |
| 226 |
183 152
|
subge0d |
⊢ ( 𝑦 ∈ ℕ → ( 0 ≤ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ↔ 2 ≤ ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 227 |
191 226
|
mpbird |
⊢ ( 𝑦 ∈ ℕ → 0 ≤ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) |
| 228 |
|
elnn0z |
⊢ ( ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℕ0 ↔ ( ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℤ ∧ 0 ≤ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) |
| 229 |
225 227 228
|
sylanbrc |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℕ0 ) |
| 230 |
2
|
wallispilem3 |
⊢ ( ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ∈ ℕ0 → ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℝ+ ) |
| 231 |
229 230
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℝ+ ) |
| 232 |
231
|
rpcnne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ≠ 0 ) ) |
| 233 |
223 224 232
|
jca31 |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ∧ ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) ∧ ( ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ≠ 0 ) ) ) |
| 234 |
|
divmuldiv |
⊢ ( ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( 2 · 𝑦 ) ) ∈ ℂ ) ∧ ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ∧ ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) ∧ ( ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ∈ ℂ ∧ ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ≠ 0 ) ) ) → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
| 235 |
204 210 233 234
|
syl21anc |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) · ( 𝐼 ‘ ( 2 · 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) · ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
| 236 |
147 196 235
|
3eqtr4d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) ) |
| 237 |
133 142 125
|
addsubassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) = ( ( 2 · 𝑦 ) + ( 3 − 2 ) ) ) |
| 238 |
82
|
a1i |
⊢ ( 𝑦 ∈ ℕ → ( 3 − 2 ) = 1 ) |
| 239 |
238
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + ( 3 − 2 ) ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 240 |
237 239
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) = ( ( 2 · 𝑦 ) + 1 ) ) |
| 241 |
240
|
fveq2d |
⊢ ( 𝑦 ∈ ℕ → ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) = ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) |
| 242 |
241
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) = ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) |
| 243 |
242
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( ( 2 · 𝑦 ) + 3 ) − 2 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) ) |
| 244 |
236 243
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) ) |
| 245 |
244
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) ) ) |
| 246 |
|
elnnuz |
⊢ ( 𝑦 ∈ ℕ ↔ 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
| 247 |
246
|
biimpi |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
| 248 |
|
seqp1 |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) ) |
| 249 |
247 248
|
syl |
⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) ) |
| 250 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( 2 · 𝑘 ) = ( 2 · ( 𝑦 + 1 ) ) ) |
| 251 |
250
|
oveq1d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) |
| 252 |
250 251
|
oveq12d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) ) |
| 253 |
250
|
oveq1d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) |
| 254 |
250 253
|
oveq12d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) |
| 255 |
252 254
|
oveq12d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) |
| 256 |
152 155
|
remulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℝ ) |
| 257 |
256 154
|
resubcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ∈ ℝ ) |
| 258 |
|
1lt2 |
⊢ 1 < 2 |
| 259 |
258
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 1 < 2 ) |
| 260 |
|
nnrp |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ+ ) |
| 261 |
154 260
|
ltaddrp2d |
⊢ ( 𝑦 ∈ ℕ → 1 < ( 𝑦 + 1 ) ) |
| 262 |
152 155 259 261
|
mulgt1d |
⊢ ( 𝑦 ∈ ℕ → 1 < ( 2 · ( 𝑦 + 1 ) ) ) |
| 263 |
154 262
|
gtned |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ≠ 1 ) |
| 264 |
199 127 263
|
subne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ≠ 0 ) |
| 265 |
256 257 264
|
redivcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) ∈ ℝ ) |
| 266 |
176 183
|
eqeltrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ∈ ℝ ) |
| 267 |
176 222
|
eqnetrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ≠ 0 ) |
| 268 |
256 266 267
|
redivcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ∈ ℝ ) |
| 269 |
265 268
|
remulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ∈ ℝ ) |
| 270 |
1 255 201 269
|
fvmptd3 |
⊢ ( 𝑦 ∈ ℕ → ( 𝐹 ‘ ( 𝑦 + 1 ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) |
| 271 |
270
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( 𝐹 ‘ ( 𝑦 + 1 ) ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) |
| 272 |
249 271
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) |
| 273 |
272
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) |
| 274 |
273
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) = ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) ) |
| 275 |
137
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) ) |
| 276 |
176
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) = ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) |
| 277 |
275 276
|
oveq12d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) |
| 278 |
277
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) = ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 279 |
278
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
| 280 |
279
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) = ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) ) |
| 281 |
|
elfznn |
⊢ ( 𝑤 ∈ ( 1 ... 𝑦 ) → 𝑤 ∈ ℕ ) |
| 282 |
281
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ( 1 ... 𝑦 ) ) → 𝑤 ∈ ℕ ) |
| 283 |
|
oveq2 |
⊢ ( 𝑘 = 𝑤 → ( 2 · 𝑘 ) = ( 2 · 𝑤 ) ) |
| 284 |
283
|
oveq1d |
⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) − 1 ) = ( ( 2 · 𝑤 ) − 1 ) ) |
| 285 |
283 284
|
oveq12d |
⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) = ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) ) |
| 286 |
283
|
oveq1d |
⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · 𝑤 ) + 1 ) ) |
| 287 |
283 286
|
oveq12d |
⊢ ( 𝑘 = 𝑤 → ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) |
| 288 |
285 287
|
oveq12d |
⊢ ( 𝑘 = 𝑤 → ( ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) − 1 ) ) · ( ( 2 · 𝑘 ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) · ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) ) |
| 289 |
|
id |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℕ ) |
| 290 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 291 |
290
|
a1i |
⊢ ( 𝑤 ∈ ℕ → 2 ∈ ℝ+ ) |
| 292 |
|
nnrp |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℝ+ ) |
| 293 |
291 292
|
rpmulcld |
⊢ ( 𝑤 ∈ ℕ → ( 2 · 𝑤 ) ∈ ℝ+ ) |
| 294 |
69
|
a1i |
⊢ ( 𝑤 ∈ ℕ → 2 ∈ ℝ ) |
| 295 |
|
nnre |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℝ ) |
| 296 |
294 295
|
remulcld |
⊢ ( 𝑤 ∈ ℕ → ( 2 · 𝑤 ) ∈ ℝ ) |
| 297 |
|
1red |
⊢ ( 𝑤 ∈ ℕ → 1 ∈ ℝ ) |
| 298 |
296 297
|
resubcld |
⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) − 1 ) ∈ ℝ ) |
| 299 |
|
nnge1 |
⊢ ( 𝑤 ∈ ℕ → 1 ≤ 𝑤 ) |
| 300 |
|
nncn |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℂ ) |
| 301 |
300
|
mullidd |
⊢ ( 𝑤 ∈ ℕ → ( 1 · 𝑤 ) = 𝑤 ) |
| 302 |
297 294 292
|
ltmul1d |
⊢ ( 𝑤 ∈ ℕ → ( 1 < 2 ↔ ( 1 · 𝑤 ) < ( 2 · 𝑤 ) ) ) |
| 303 |
258 302
|
mpbii |
⊢ ( 𝑤 ∈ ℕ → ( 1 · 𝑤 ) < ( 2 · 𝑤 ) ) |
| 304 |
301 303
|
eqbrtrrd |
⊢ ( 𝑤 ∈ ℕ → 𝑤 < ( 2 · 𝑤 ) ) |
| 305 |
297 295 296 299 304
|
lelttrd |
⊢ ( 𝑤 ∈ ℕ → 1 < ( 2 · 𝑤 ) ) |
| 306 |
297 296
|
posdifd |
⊢ ( 𝑤 ∈ ℕ → ( 1 < ( 2 · 𝑤 ) ↔ 0 < ( ( 2 · 𝑤 ) − 1 ) ) ) |
| 307 |
305 306
|
mpbid |
⊢ ( 𝑤 ∈ ℕ → 0 < ( ( 2 · 𝑤 ) − 1 ) ) |
| 308 |
298 307
|
elrpd |
⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) − 1 ) ∈ ℝ+ ) |
| 309 |
293 308
|
rpdivcld |
⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) ∈ ℝ+ ) |
| 310 |
156
|
a1i |
⊢ ( 𝑤 ∈ ℕ → 0 ≤ 2 ) |
| 311 |
292
|
rpge0d |
⊢ ( 𝑤 ∈ ℕ → 0 ≤ 𝑤 ) |
| 312 |
294 295 310 311
|
mulge0d |
⊢ ( 𝑤 ∈ ℕ → 0 ≤ ( 2 · 𝑤 ) ) |
| 313 |
296 312
|
ge0p1rpd |
⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) + 1 ) ∈ ℝ+ ) |
| 314 |
293 313
|
rpdivcld |
⊢ ( 𝑤 ∈ ℕ → ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ∈ ℝ+ ) |
| 315 |
309 314
|
rpmulcld |
⊢ ( 𝑤 ∈ ℕ → ( ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) · ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) ∈ ℝ+ ) |
| 316 |
1 288 289 315
|
fvmptd3 |
⊢ ( 𝑤 ∈ ℕ → ( 𝐹 ‘ 𝑤 ) = ( ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) − 1 ) ) · ( ( 2 · 𝑤 ) / ( ( 2 · 𝑤 ) + 1 ) ) ) ) |
| 317 |
316 315
|
eqeltrd |
⊢ ( 𝑤 ∈ ℕ → ( 𝐹 ‘ 𝑤 ) ∈ ℝ+ ) |
| 318 |
282 317
|
syl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ( 1 ... 𝑦 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ+ ) |
| 319 |
|
rpmulcl |
⊢ ( ( 𝑤 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) → ( 𝑤 · 𝑧 ) ∈ ℝ+ ) |
| 320 |
319
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( 𝑤 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑤 · 𝑧 ) ∈ ℝ+ ) |
| 321 |
247 318 320
|
seqcl |
⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℝ+ ) |
| 322 |
321
|
rpcnne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℂ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ≠ 0 ) ) |
| 323 |
290
|
a1i |
⊢ ( 𝑦 ∈ ℕ → 2 ∈ ℝ+ ) |
| 324 |
153 159
|
ge0p1rpd |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 + 1 ) ∈ ℝ+ ) |
| 325 |
323 324
|
rpmulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · ( 𝑦 + 1 ) ) ∈ ℝ+ ) |
| 326 |
152 153 157 159
|
mulge0d |
⊢ ( 𝑦 ∈ ℕ → 0 ≤ ( 2 · 𝑦 ) ) |
| 327 |
181 326
|
ge0p1rpd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 1 ) ∈ ℝ+ ) |
| 328 |
325 327
|
rpdivcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) ∈ ℝ+ ) |
| 329 |
323 260
|
rpmulcld |
⊢ ( 𝑦 ∈ ℕ → ( 2 · 𝑦 ) ∈ ℝ+ ) |
| 330 |
329 219
|
rpaddcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 3 ) ∈ ℝ+ ) |
| 331 |
325 330
|
rpdivcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℝ+ ) |
| 332 |
328 331
|
rpmulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℝ+ ) |
| 333 |
332
|
rpcnne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ∧ ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ≠ 0 ) ) |
| 334 |
|
divdiv1 |
⊢ ( ( 1 ∈ ℂ ∧ ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℂ ∧ ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ≠ 0 ) ∧ ( ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ∧ ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ≠ 0 ) ) → ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
| 335 |
127 322 333 334
|
syl3anc |
⊢ ( 𝑦 ∈ ℕ → ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
| 336 |
335
|
eqcomd |
⊢ ( 𝑦 ∈ ℕ → ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) = ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 337 |
336
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) = ( ( π / 2 ) · ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
| 338 |
64
|
a1i |
⊢ ( 𝑦 ∈ ℕ → ( π / 2 ) ∈ ℂ ) |
| 339 |
321
|
rpcnd |
⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ∈ ℂ ) |
| 340 |
321
|
rpne0d |
⊢ ( 𝑦 ∈ ℕ → ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ≠ 0 ) |
| 341 |
339 340
|
reccld |
⊢ ( 𝑦 ∈ ℕ → ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ∈ ℂ ) |
| 342 |
332
|
rpcnd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ) |
| 343 |
332
|
rpne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ≠ 0 ) |
| 344 |
338 341 342 343
|
divassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( π / 2 ) · ( ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) |
| 345 |
137 264
|
eqnetrrd |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · 𝑦 ) + 1 ) ≠ 0 ) |
| 346 |
199 197 199 211 345 222
|
divmuldivd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) = ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) |
| 347 |
346
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 348 |
338 341
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 349 |
199 199
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ∈ ℂ ) |
| 350 |
197 211
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ∈ ℂ ) |
| 351 |
199 199 203 203
|
mulne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ≠ 0 ) |
| 352 |
197 211 345 222
|
mulne0d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ≠ 0 ) |
| 353 |
348 349 350 351 352
|
divdiv2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) |
| 354 |
348 350 349 351
|
divassd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) ) |
| 355 |
353 354
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) / ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) ) |
| 356 |
197 199 199 211 203 222 203
|
divdivdivd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) = ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) |
| 357 |
356
|
eqcomd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) = ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) |
| 358 |
357
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) · ( ( 2 · 𝑦 ) + 3 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) · ( 2 · ( 𝑦 + 1 ) ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 359 |
347 355 358
|
3eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) / ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 360 |
337 344 359
|
3eqtr2d |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) ) = ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) ) |
| 361 |
60
|
a1i |
⊢ ( 𝑦 ∈ ℕ → π ∈ ℂ ) |
| 362 |
361
|
halfcld |
⊢ ( 𝑦 ∈ ℕ → ( π / 2 ) ∈ ℂ ) |
| 363 |
362 341
|
mulcld |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 364 |
204 223 224
|
divcld |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ∈ ℂ ) |
| 365 |
363 364
|
mulcomd |
⊢ ( 𝑦 ∈ ℕ → ( ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) · ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 366 |
280 360 365
|
3eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) · ( ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) − 1 ) ) · ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 367 |
274 366
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 368 |
367
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) = ( ( ( ( ( 2 · 𝑦 ) + 1 ) / ( 2 · ( 𝑦 + 1 ) ) ) / ( ( 2 · ( 𝑦 + 1 ) ) / ( ( 2 · 𝑦 ) + 3 ) ) ) · ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) ) |
| 369 |
124 245 368
|
3eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) ) → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) |
| 370 |
369
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ( ( 𝐼 ‘ ( 2 · 𝑦 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑦 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑦 ) ) ) → ( ( 𝐼 ‘ ( 2 · ( 𝑦 + 1 ) ) ) / ( 𝐼 ‘ ( ( 2 · ( 𝑦 + 1 ) ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ ( 𝑦 + 1 ) ) ) ) ) ) |
| 371 |
12 20 28 36 122 370
|
nnind |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 372 |
371
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐼 ‘ ( 2 · 𝑛 ) ) / ( 𝐼 ‘ ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( π / 2 ) · ( 1 / ( seq 1 ( · , 𝐹 ) ‘ 𝑛 ) ) ) ) |
| 373 |
372 3 4
|
3eqtr4i |
⊢ 𝐺 = 𝐻 |