| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wallispilem5.1 | ⊢ 𝐹  =  ( 𝑘  ∈  ℕ  ↦  ( ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  −  1 ) )  ·  ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 2 |  | wallispilem5.2 | ⊢ 𝐼  =  ( 𝑛  ∈  ℕ0  ↦  ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  d 𝑥 ) | 
						
							| 3 |  | wallispilem5.3 | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐼 ‘ ( 2  ·  𝑛 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑛 )  +  1 ) ) ) ) | 
						
							| 4 |  | wallispilem5.4 | ⊢ 𝐻  =  ( 𝑛  ∈  ℕ  ↦  ( ( π  /  2 )  ·  ( 1  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 5 |  | wallispilem5.5 | ⊢ 𝐿  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 2  ·  𝑛 )  +  1 )  /  ( 2  ·  𝑛 ) ) ) | 
						
							| 6 | 1 2 3 4 | wallispilem4 | ⊢ 𝐺  =  𝐻 | 
						
							| 7 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 8 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 9 |  | 2cnd | ⊢ ( ⊤  →  2  ∈  ℂ ) | 
						
							| 10 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 11 | 10 | a1i | ⊢ ( ⊤  →  2  ≠  0 ) | 
						
							| 12 |  | 1cnd | ⊢ ( ⊤  →  1  ∈  ℂ ) | 
						
							| 13 | 5 9 11 12 | clim1fr1 | ⊢ ( ⊤  →  𝐿  ⇝  1 ) | 
						
							| 14 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 15 | 14 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐼 ‘ ( 2  ·  𝑛 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑛 )  +  1 ) ) ) )  ∈  V | 
						
							| 16 | 3 15 | eqeltri | ⊢ 𝐺  ∈  V | 
						
							| 17 | 16 | a1i | ⊢ ( ⊤  →  𝐺  ∈  V ) | 
						
							| 18 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 19 | 18 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℕ0 ) | 
						
							| 20 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 21 | 19 20 | nn0mulcld | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 22 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 23 | 22 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  1  ∈  ℕ0 ) | 
						
							| 24 | 21 23 | nn0addcld | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ0 ) | 
						
							| 25 | 24 | nn0red | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℝ ) | 
						
							| 26 | 21 | nn0red | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ∈  ℝ ) | 
						
							| 27 |  | 2cnd | ⊢ ( 𝑛  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 28 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 29 | 10 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  2  ≠  0 ) | 
						
							| 30 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 31 | 27 28 29 30 | mulne0d | ⊢ ( 𝑛  ∈  ℕ  →  ( 2  ·  𝑛 )  ≠  0 ) | 
						
							| 32 | 25 26 31 | redivcld | ⊢ ( 𝑛  ∈  ℕ  →  ( ( ( 2  ·  𝑛 )  +  1 )  /  ( 2  ·  𝑛 ) )  ∈  ℝ ) | 
						
							| 33 | 5 32 | fmpti | ⊢ 𝐿 : ℕ ⟶ ℝ | 
						
							| 34 | 33 | a1i | ⊢ ( ⊤  →  𝐿 : ℕ ⟶ ℝ ) | 
						
							| 35 | 34 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐿 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 36 | 2 | wallispilem3 | ⊢ ( ( 2  ·  𝑛 )  ∈  ℕ0  →  ( 𝐼 ‘ ( 2  ·  𝑛 ) )  ∈  ℝ+ ) | 
						
							| 37 | 21 36 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐼 ‘ ( 2  ·  𝑛 ) )  ∈  ℝ+ ) | 
						
							| 38 | 37 | rpred | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐼 ‘ ( 2  ·  𝑛 ) )  ∈  ℝ ) | 
						
							| 39 | 2 | wallispilem3 | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ0  →  ( 𝐼 ‘ ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 40 | 24 39 | syl | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 41 | 38 40 | rerpdivcld | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝐼 ‘ ( 2  ·  𝑛 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑛 )  +  1 ) ) )  ∈  ℝ ) | 
						
							| 42 | 3 41 | fmpti | ⊢ 𝐺 : ℕ ⟶ ℝ | 
						
							| 43 | 42 | a1i | ⊢ ( ⊤  →  𝐺 : ℕ ⟶ ℝ ) | 
						
							| 44 | 43 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 45 | 18 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  2  ∈  ℕ0 ) | 
						
							| 46 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 47 | 45 46 | nn0mulcld | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·  𝑘 )  ∈  ℕ0 ) | 
						
							| 48 | 2 | wallispilem3 | ⊢ ( ( 2  ·  𝑘 )  ∈  ℕ0  →  ( 𝐼 ‘ ( 2  ·  𝑘 ) )  ∈  ℝ+ ) | 
						
							| 49 | 47 48 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( 2  ·  𝑘 ) )  ∈  ℝ+ ) | 
						
							| 50 | 49 | rpred | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( 2  ·  𝑘 ) )  ∈  ℝ ) | 
						
							| 51 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 52 | 51 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 53 |  | id | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ ) | 
						
							| 54 | 52 53 | nnmulcld | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·  𝑘 )  ∈  ℕ ) | 
						
							| 55 |  | nnm1nn0 | ⊢ ( ( 2  ·  𝑘 )  ∈  ℕ  →  ( ( 2  ·  𝑘 )  −  1 )  ∈  ℕ0 ) | 
						
							| 56 | 54 55 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  −  1 )  ∈  ℕ0 ) | 
						
							| 57 | 2 | wallispilem3 | ⊢ ( ( ( 2  ·  𝑘 )  −  1 )  ∈  ℕ0  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) )  ∈  ℝ+ ) | 
						
							| 58 | 56 57 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) )  ∈  ℝ+ ) | 
						
							| 59 | 58 | rpred | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) )  ∈  ℝ ) | 
						
							| 60 | 22 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  1  ∈  ℕ0 ) | 
						
							| 61 | 47 60 | nn0addcld | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ0 ) | 
						
							| 62 | 2 | wallispilem3 | ⊢ ( ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ0  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 63 | 61 62 | syl | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 64 |  | 2cnd | ⊢ ( 𝑘  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 65 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 66 | 64 65 | mulcld | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·  𝑘 )  ∈  ℂ ) | 
						
							| 67 |  | 1cnd | ⊢ ( 𝑘  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 68 | 66 67 | npcand | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 2  ·  𝑘 )  −  1 )  +  1 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 69 | 68 | fveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( ( 2  ·  𝑘 )  −  1 )  +  1 ) )  =  ( 𝐼 ‘ ( 2  ·  𝑘 ) ) ) | 
						
							| 70 | 2 56 | wallispilem1 | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( ( 2  ·  𝑘 )  −  1 )  +  1 ) )  ≤  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) | 
						
							| 71 | 69 70 | eqbrtrrd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( 2  ·  𝑘 ) )  ≤  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) | 
						
							| 72 | 50 59 63 71 | lediv1dd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐼 ‘ ( 2  ·  𝑘 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  ≤  ( ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 73 | 66 67 | addcld | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℂ ) | 
						
							| 74 | 10 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  2  ≠  0 ) | 
						
							| 75 |  | nnne0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ≠  0 ) | 
						
							| 76 | 64 65 74 75 | mulne0d | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·  𝑘 )  ≠  0 ) | 
						
							| 77 | 73 66 76 | divcld | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ∈  ℂ ) | 
						
							| 78 | 63 | rpcnd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℂ ) | 
						
							| 79 | 63 | rpne0d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  ≠  0 ) | 
						
							| 80 | 77 78 79 | divcan4d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) ) ) | 
						
							| 81 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 82 | 81 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 83 |  | nnre | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ ) | 
						
							| 84 | 82 83 | remulcld | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·  𝑘 )  ∈  ℝ ) | 
						
							| 85 |  | 1red | ⊢ ( 𝑘  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 86 | 84 85 | readdcld | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 87 | 45 | nn0ge0d | ⊢ ( 𝑘  ∈  ℕ  →  0  ≤  2 ) | 
						
							| 88 |  | nnge1 | ⊢ ( 𝑘  ∈  ℕ  →  1  ≤  𝑘 ) | 
						
							| 89 | 82 83 87 88 | lemulge11d | ⊢ ( 𝑘  ∈  ℕ  →  2  ≤  ( 2  ·  𝑘 ) ) | 
						
							| 90 | 84 | ltp1d | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·  𝑘 )  <  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 91 | 82 84 86 89 90 | lelttrd | ⊢ ( 𝑘  ∈  ℕ  →  2  <  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 92 | 82 86 91 | ltled | ⊢ ( 𝑘  ∈  ℕ  →  2  ≤  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 93 | 45 | nn0zd | ⊢ ( 𝑘  ∈  ℕ  →  2  ∈  ℤ ) | 
						
							| 94 | 61 | nn0zd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℤ ) | 
						
							| 95 |  | eluz | ⊢ ( ( 2  ∈  ℤ  ∧  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℤ )  →  ( ( ( 2  ·  𝑘 )  +  1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  2  ≤  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 96 | 93 94 95 | syl2anc | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 2  ·  𝑘 )  +  1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  2  ≤  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 97 | 92 96 | mpbird | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 98 | 2 97 | itgsinexp | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  =  ( ( ( ( ( 2  ·  𝑘 )  +  1 )  −  1 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝐼 ‘ ( ( ( 2  ·  𝑘 )  +  1 )  −  2 ) ) ) ) | 
						
							| 99 | 66 67 | pncand | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 2  ·  𝑘 )  +  1 )  −  1 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 100 | 99 | oveq1d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( 2  ·  𝑘 )  +  1 )  −  1 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  =  ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 101 |  | 1e2m1 | ⊢ 1  =  ( 2  −  1 ) | 
						
							| 102 | 101 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  1  =  ( 2  −  1 ) ) | 
						
							| 103 | 102 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  −  1 )  =  ( ( 2  ·  𝑘 )  −  ( 2  −  1 ) ) ) | 
						
							| 104 | 66 64 67 | subsub3d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  −  ( 2  −  1 ) )  =  ( ( ( 2  ·  𝑘 )  +  1 )  −  2 ) ) | 
						
							| 105 | 103 104 | eqtr2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 2  ·  𝑘 )  +  1 )  −  2 )  =  ( ( 2  ·  𝑘 )  −  1 ) ) | 
						
							| 106 | 105 | fveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( ( 2  ·  𝑘 )  +  1 )  −  2 ) )  =  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) | 
						
							| 107 | 100 106 | oveq12d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( ( 2  ·  𝑘 )  +  1 )  −  1 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝐼 ‘ ( ( ( 2  ·  𝑘 )  +  1 )  −  2 ) ) )  =  ( ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) ) | 
						
							| 108 | 98 107 | eqtrd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  =  ( ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) ) | 
						
							| 109 | 108 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ·  ( ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) ) ) | 
						
							| 110 | 54 | peano2nnd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ ) | 
						
							| 111 | 110 | nnne0d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  +  1 )  ≠  0 ) | 
						
							| 112 | 66 73 111 | divcld | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℂ ) | 
						
							| 113 | 58 | rpcnd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) )  ∈  ℂ ) | 
						
							| 114 | 77 112 113 | mulassd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ·  ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) )  =  ( ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ·  ( ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) ) ) | 
						
							| 115 | 73 66 111 76 | divcan6d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ·  ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  =  1 ) | 
						
							| 116 | 115 | oveq1d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ·  ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) )  =  ( 1  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) ) | 
						
							| 117 | 113 | mullidd | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) )  =  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) | 
						
							| 118 | 116 117 | eqtrd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ·  ( ( 2  ·  𝑘 )  /  ( ( 2  ·  𝑘 )  +  1 ) ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) )  =  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) | 
						
							| 119 | 109 114 118 | 3eqtr2d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) ) ) | 
						
							| 120 | 119 | oveq1d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  ·  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  =  ( ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 121 | 80 120 | eqtr3d | ⊢ ( 𝑘  ∈  ℕ  →  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) )  =  ( ( 𝐼 ‘ ( ( 2  ·  𝑘 )  −  1 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 122 | 72 121 | breqtrrd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐼 ‘ ( 2  ·  𝑘 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  ≤  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) ) ) | 
						
							| 123 | 49 63 | rpdivcld | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐼 ‘ ( 2  ·  𝑘 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 124 |  | nfcv | ⊢ Ⅎ 𝑛 𝑘 | 
						
							| 125 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ0  ↦  ∫ ( 0 (,) π ) ( ( sin ‘ 𝑥 ) ↑ 𝑛 )  d 𝑥 ) | 
						
							| 126 | 2 125 | nfcxfr | ⊢ Ⅎ 𝑛 𝐼 | 
						
							| 127 |  | nfcv | ⊢ Ⅎ 𝑛 ( 2  ·  𝑘 ) | 
						
							| 128 | 126 127 | nffv | ⊢ Ⅎ 𝑛 ( 𝐼 ‘ ( 2  ·  𝑘 ) ) | 
						
							| 129 |  | nfcv | ⊢ Ⅎ 𝑛  / | 
						
							| 130 |  | nfcv | ⊢ Ⅎ 𝑛 ( ( 2  ·  𝑘 )  +  1 ) | 
						
							| 131 | 126 130 | nffv | ⊢ Ⅎ 𝑛 ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 132 | 128 129 131 | nfov | ⊢ Ⅎ 𝑛 ( ( 𝐼 ‘ ( 2  ·  𝑘 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 133 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 134 | 133 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( 𝐼 ‘ ( 2  ·  𝑛 ) )  =  ( 𝐼 ‘ ( 2  ·  𝑘 ) ) ) | 
						
							| 135 | 133 | fvoveq1d | ⊢ ( 𝑛  =  𝑘  →  ( 𝐼 ‘ ( ( 2  ·  𝑛 )  +  1 ) )  =  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 136 | 134 135 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐼 ‘ ( 2  ·  𝑛 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑛 )  +  1 ) ) )  =  ( ( 𝐼 ‘ ( 2  ·  𝑘 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 137 | 124 132 136 3 | fvmptf | ⊢ ( ( 𝑘  ∈  ℕ  ∧  ( ( 𝐼 ‘ ( 2  ·  𝑘 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  ∈  ℝ+ )  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐼 ‘ ( 2  ·  𝑘 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 138 | 123 137 | mpdan | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐼 ‘ ( 2  ·  𝑘 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 139 | 5 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  𝐿  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 2  ·  𝑛 )  +  1 )  /  ( 2  ·  𝑛 ) ) ) ) | 
						
							| 140 |  | simpr | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  𝑛  =  𝑘 ) | 
						
							| 141 | 140 | oveq2d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 142 | 141 | oveq1d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  ( ( 2  ·  𝑛 )  +  1 )  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 143 | 142 141 | oveq12d | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑛  =  𝑘 )  →  ( ( ( 2  ·  𝑛 )  +  1 )  /  ( 2  ·  𝑛 ) )  =  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) ) ) | 
						
							| 144 | 139 143 53 77 | fvmptd | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐿 ‘ 𝑘 )  =  ( ( ( 2  ·  𝑘 )  +  1 )  /  ( 2  ·  𝑘 ) ) ) | 
						
							| 145 | 122 138 144 | 3brtr4d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐺 ‘ 𝑘 )  ≤  ( 𝐿 ‘ 𝑘 ) ) | 
						
							| 146 | 145 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ≤  ( 𝐿 ‘ 𝑘 ) ) | 
						
							| 147 | 78 79 | dividd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  =  1 ) | 
						
							| 148 | 63 | rpred | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ ) | 
						
							| 149 | 2 47 | wallispilem1 | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  ≤  ( 𝐼 ‘ ( 2  ·  𝑘 ) ) ) | 
						
							| 150 | 148 50 63 149 | lediv1dd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) )  ≤  ( ( 𝐼 ‘ ( 2  ·  𝑘 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 151 | 147 150 | eqbrtrrd | ⊢ ( 𝑘  ∈  ℕ  →  1  ≤  ( ( 𝐼 ‘ ( 2  ·  𝑘 ) )  /  ( 𝐼 ‘ ( ( 2  ·  𝑘 )  +  1 ) ) ) ) | 
						
							| 152 | 151 138 | breqtrrd | ⊢ ( 𝑘  ∈  ℕ  →  1  ≤  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 153 | 152 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  1  ≤  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 154 | 7 8 13 17 35 44 146 153 | climsqz2 | ⊢ ( ⊤  →  𝐺  ⇝  1 ) | 
						
							| 155 | 154 | mptru | ⊢ 𝐺  ⇝  1 | 
						
							| 156 | 6 155 | eqbrtrri | ⊢ 𝐻  ⇝  1 |