| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wallispilem5.1 |  |-  F = ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 2 |  | wallispilem5.2 |  |-  I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) | 
						
							| 3 |  | wallispilem5.3 |  |-  G = ( n e. NN |-> ( ( I ` ( 2 x. n ) ) / ( I ` ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 4 |  | wallispilem5.4 |  |-  H = ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) | 
						
							| 5 |  | wallispilem5.5 |  |-  L = ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) | 
						
							| 6 | 1 2 3 4 | wallispilem4 |  |-  G = H | 
						
							| 7 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 8 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 9 |  | 2cnd |  |-  ( T. -> 2 e. CC ) | 
						
							| 10 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 11 | 10 | a1i |  |-  ( T. -> 2 =/= 0 ) | 
						
							| 12 |  | 1cnd |  |-  ( T. -> 1 e. CC ) | 
						
							| 13 | 5 9 11 12 | clim1fr1 |  |-  ( T. -> L ~~> 1 ) | 
						
							| 14 |  | nnex |  |-  NN e. _V | 
						
							| 15 | 14 | mptex |  |-  ( n e. NN |-> ( ( I ` ( 2 x. n ) ) / ( I ` ( ( 2 x. n ) + 1 ) ) ) ) e. _V | 
						
							| 16 | 3 15 | eqeltri |  |-  G e. _V | 
						
							| 17 | 16 | a1i |  |-  ( T. -> G e. _V ) | 
						
							| 18 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 19 | 18 | a1i |  |-  ( n e. NN -> 2 e. NN0 ) | 
						
							| 20 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 21 | 19 20 | nn0mulcld |  |-  ( n e. NN -> ( 2 x. n ) e. NN0 ) | 
						
							| 22 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 23 | 22 | a1i |  |-  ( n e. NN -> 1 e. NN0 ) | 
						
							| 24 | 21 23 | nn0addcld |  |-  ( n e. NN -> ( ( 2 x. n ) + 1 ) e. NN0 ) | 
						
							| 25 | 24 | nn0red |  |-  ( n e. NN -> ( ( 2 x. n ) + 1 ) e. RR ) | 
						
							| 26 | 21 | nn0red |  |-  ( n e. NN -> ( 2 x. n ) e. RR ) | 
						
							| 27 |  | 2cnd |  |-  ( n e. NN -> 2 e. CC ) | 
						
							| 28 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 29 | 10 | a1i |  |-  ( n e. NN -> 2 =/= 0 ) | 
						
							| 30 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 31 | 27 28 29 30 | mulne0d |  |-  ( n e. NN -> ( 2 x. n ) =/= 0 ) | 
						
							| 32 | 25 26 31 | redivcld |  |-  ( n e. NN -> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) e. RR ) | 
						
							| 33 | 5 32 | fmpti |  |-  L : NN --> RR | 
						
							| 34 | 33 | a1i |  |-  ( T. -> L : NN --> RR ) | 
						
							| 35 | 34 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( L ` k ) e. RR ) | 
						
							| 36 | 2 | wallispilem3 |  |-  ( ( 2 x. n ) e. NN0 -> ( I ` ( 2 x. n ) ) e. RR+ ) | 
						
							| 37 | 21 36 | syl |  |-  ( n e. NN -> ( I ` ( 2 x. n ) ) e. RR+ ) | 
						
							| 38 | 37 | rpred |  |-  ( n e. NN -> ( I ` ( 2 x. n ) ) e. RR ) | 
						
							| 39 | 2 | wallispilem3 |  |-  ( ( ( 2 x. n ) + 1 ) e. NN0 -> ( I ` ( ( 2 x. n ) + 1 ) ) e. RR+ ) | 
						
							| 40 | 24 39 | syl |  |-  ( n e. NN -> ( I ` ( ( 2 x. n ) + 1 ) ) e. RR+ ) | 
						
							| 41 | 38 40 | rerpdivcld |  |-  ( n e. NN -> ( ( I ` ( 2 x. n ) ) / ( I ` ( ( 2 x. n ) + 1 ) ) ) e. RR ) | 
						
							| 42 | 3 41 | fmpti |  |-  G : NN --> RR | 
						
							| 43 | 42 | a1i |  |-  ( T. -> G : NN --> RR ) | 
						
							| 44 | 43 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) | 
						
							| 45 | 18 | a1i |  |-  ( k e. NN -> 2 e. NN0 ) | 
						
							| 46 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 47 | 45 46 | nn0mulcld |  |-  ( k e. NN -> ( 2 x. k ) e. NN0 ) | 
						
							| 48 | 2 | wallispilem3 |  |-  ( ( 2 x. k ) e. NN0 -> ( I ` ( 2 x. k ) ) e. RR+ ) | 
						
							| 49 | 47 48 | syl |  |-  ( k e. NN -> ( I ` ( 2 x. k ) ) e. RR+ ) | 
						
							| 50 | 49 | rpred |  |-  ( k e. NN -> ( I ` ( 2 x. k ) ) e. RR ) | 
						
							| 51 |  | 2nn |  |-  2 e. NN | 
						
							| 52 | 51 | a1i |  |-  ( k e. NN -> 2 e. NN ) | 
						
							| 53 |  | id |  |-  ( k e. NN -> k e. NN ) | 
						
							| 54 | 52 53 | nnmulcld |  |-  ( k e. NN -> ( 2 x. k ) e. NN ) | 
						
							| 55 |  | nnm1nn0 |  |-  ( ( 2 x. k ) e. NN -> ( ( 2 x. k ) - 1 ) e. NN0 ) | 
						
							| 56 | 54 55 | syl |  |-  ( k e. NN -> ( ( 2 x. k ) - 1 ) e. NN0 ) | 
						
							| 57 | 2 | wallispilem3 |  |-  ( ( ( 2 x. k ) - 1 ) e. NN0 -> ( I ` ( ( 2 x. k ) - 1 ) ) e. RR+ ) | 
						
							| 58 | 56 57 | syl |  |-  ( k e. NN -> ( I ` ( ( 2 x. k ) - 1 ) ) e. RR+ ) | 
						
							| 59 | 58 | rpred |  |-  ( k e. NN -> ( I ` ( ( 2 x. k ) - 1 ) ) e. RR ) | 
						
							| 60 | 22 | a1i |  |-  ( k e. NN -> 1 e. NN0 ) | 
						
							| 61 | 47 60 | nn0addcld |  |-  ( k e. NN -> ( ( 2 x. k ) + 1 ) e. NN0 ) | 
						
							| 62 | 2 | wallispilem3 |  |-  ( ( ( 2 x. k ) + 1 ) e. NN0 -> ( I ` ( ( 2 x. k ) + 1 ) ) e. RR+ ) | 
						
							| 63 | 61 62 | syl |  |-  ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) e. RR+ ) | 
						
							| 64 |  | 2cnd |  |-  ( k e. NN -> 2 e. CC ) | 
						
							| 65 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 66 | 64 65 | mulcld |  |-  ( k e. NN -> ( 2 x. k ) e. CC ) | 
						
							| 67 |  | 1cnd |  |-  ( k e. NN -> 1 e. CC ) | 
						
							| 68 | 66 67 | npcand |  |-  ( k e. NN -> ( ( ( 2 x. k ) - 1 ) + 1 ) = ( 2 x. k ) ) | 
						
							| 69 | 68 | fveq2d |  |-  ( k e. NN -> ( I ` ( ( ( 2 x. k ) - 1 ) + 1 ) ) = ( I ` ( 2 x. k ) ) ) | 
						
							| 70 | 2 56 | wallispilem1 |  |-  ( k e. NN -> ( I ` ( ( ( 2 x. k ) - 1 ) + 1 ) ) <_ ( I ` ( ( 2 x. k ) - 1 ) ) ) | 
						
							| 71 | 69 70 | eqbrtrrd |  |-  ( k e. NN -> ( I ` ( 2 x. k ) ) <_ ( I ` ( ( 2 x. k ) - 1 ) ) ) | 
						
							| 72 | 50 59 63 71 | lediv1dd |  |-  ( k e. NN -> ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) <_ ( ( I ` ( ( 2 x. k ) - 1 ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 73 | 66 67 | addcld |  |-  ( k e. NN -> ( ( 2 x. k ) + 1 ) e. CC ) | 
						
							| 74 | 10 | a1i |  |-  ( k e. NN -> 2 =/= 0 ) | 
						
							| 75 |  | nnne0 |  |-  ( k e. NN -> k =/= 0 ) | 
						
							| 76 | 64 65 74 75 | mulne0d |  |-  ( k e. NN -> ( 2 x. k ) =/= 0 ) | 
						
							| 77 | 73 66 76 | divcld |  |-  ( k e. NN -> ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) e. CC ) | 
						
							| 78 | 63 | rpcnd |  |-  ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) e. CC ) | 
						
							| 79 | 63 | rpne0d |  |-  ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) =/= 0 ) | 
						
							| 80 | 77 78 79 | divcan4d |  |-  ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( I ` ( ( 2 x. k ) + 1 ) ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) = ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) ) | 
						
							| 81 |  | 2re |  |-  2 e. RR | 
						
							| 82 | 81 | a1i |  |-  ( k e. NN -> 2 e. RR ) | 
						
							| 83 |  | nnre |  |-  ( k e. NN -> k e. RR ) | 
						
							| 84 | 82 83 | remulcld |  |-  ( k e. NN -> ( 2 x. k ) e. RR ) | 
						
							| 85 |  | 1red |  |-  ( k e. NN -> 1 e. RR ) | 
						
							| 86 | 84 85 | readdcld |  |-  ( k e. NN -> ( ( 2 x. k ) + 1 ) e. RR ) | 
						
							| 87 | 45 | nn0ge0d |  |-  ( k e. NN -> 0 <_ 2 ) | 
						
							| 88 |  | nnge1 |  |-  ( k e. NN -> 1 <_ k ) | 
						
							| 89 | 82 83 87 88 | lemulge11d |  |-  ( k e. NN -> 2 <_ ( 2 x. k ) ) | 
						
							| 90 | 84 | ltp1d |  |-  ( k e. NN -> ( 2 x. k ) < ( ( 2 x. k ) + 1 ) ) | 
						
							| 91 | 82 84 86 89 90 | lelttrd |  |-  ( k e. NN -> 2 < ( ( 2 x. k ) + 1 ) ) | 
						
							| 92 | 82 86 91 | ltled |  |-  ( k e. NN -> 2 <_ ( ( 2 x. k ) + 1 ) ) | 
						
							| 93 | 45 | nn0zd |  |-  ( k e. NN -> 2 e. ZZ ) | 
						
							| 94 | 61 | nn0zd |  |-  ( k e. NN -> ( ( 2 x. k ) + 1 ) e. ZZ ) | 
						
							| 95 |  | eluz |  |-  ( ( 2 e. ZZ /\ ( ( 2 x. k ) + 1 ) e. ZZ ) -> ( ( ( 2 x. k ) + 1 ) e. ( ZZ>= ` 2 ) <-> 2 <_ ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 96 | 93 94 95 | syl2anc |  |-  ( k e. NN -> ( ( ( 2 x. k ) + 1 ) e. ( ZZ>= ` 2 ) <-> 2 <_ ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 97 | 92 96 | mpbird |  |-  ( k e. NN -> ( ( 2 x. k ) + 1 ) e. ( ZZ>= ` 2 ) ) | 
						
							| 98 | 2 97 | itgsinexp |  |-  ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) = ( ( ( ( ( 2 x. k ) + 1 ) - 1 ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( ( 2 x. k ) + 1 ) - 2 ) ) ) ) | 
						
							| 99 | 66 67 | pncand |  |-  ( k e. NN -> ( ( ( 2 x. k ) + 1 ) - 1 ) = ( 2 x. k ) ) | 
						
							| 100 | 99 | oveq1d |  |-  ( k e. NN -> ( ( ( ( 2 x. k ) + 1 ) - 1 ) / ( ( 2 x. k ) + 1 ) ) = ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 101 |  | 1e2m1 |  |-  1 = ( 2 - 1 ) | 
						
							| 102 | 101 | a1i |  |-  ( k e. NN -> 1 = ( 2 - 1 ) ) | 
						
							| 103 | 102 | oveq2d |  |-  ( k e. NN -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. k ) - ( 2 - 1 ) ) ) | 
						
							| 104 | 66 64 67 | subsub3d |  |-  ( k e. NN -> ( ( 2 x. k ) - ( 2 - 1 ) ) = ( ( ( 2 x. k ) + 1 ) - 2 ) ) | 
						
							| 105 | 103 104 | eqtr2d |  |-  ( k e. NN -> ( ( ( 2 x. k ) + 1 ) - 2 ) = ( ( 2 x. k ) - 1 ) ) | 
						
							| 106 | 105 | fveq2d |  |-  ( k e. NN -> ( I ` ( ( ( 2 x. k ) + 1 ) - 2 ) ) = ( I ` ( ( 2 x. k ) - 1 ) ) ) | 
						
							| 107 | 100 106 | oveq12d |  |-  ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) - 1 ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( ( 2 x. k ) + 1 ) - 2 ) ) ) = ( ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) ) | 
						
							| 108 | 98 107 | eqtrd |  |-  ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) = ( ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) ) | 
						
							| 109 | 108 | oveq2d |  |-  ( k e. NN -> ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( I ` ( ( 2 x. k ) + 1 ) ) ) = ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) ) ) | 
						
							| 110 | 54 | peano2nnd |  |-  ( k e. NN -> ( ( 2 x. k ) + 1 ) e. NN ) | 
						
							| 111 | 110 | nnne0d |  |-  ( k e. NN -> ( ( 2 x. k ) + 1 ) =/= 0 ) | 
						
							| 112 | 66 73 111 | divcld |  |-  ( k e. NN -> ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) e. CC ) | 
						
							| 113 | 58 | rpcnd |  |-  ( k e. NN -> ( I ` ( ( 2 x. k ) - 1 ) ) e. CC ) | 
						
							| 114 | 77 112 113 | mulassd |  |-  ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) = ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) ) ) | 
						
							| 115 | 73 66 111 76 | divcan6d |  |-  ( k e. NN -> ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) = 1 ) | 
						
							| 116 | 115 | oveq1d |  |-  ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) = ( 1 x. ( I ` ( ( 2 x. k ) - 1 ) ) ) ) | 
						
							| 117 | 113 | mullidd |  |-  ( k e. NN -> ( 1 x. ( I ` ( ( 2 x. k ) - 1 ) ) ) = ( I ` ( ( 2 x. k ) - 1 ) ) ) | 
						
							| 118 | 116 117 | eqtrd |  |-  ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) x. ( I ` ( ( 2 x. k ) - 1 ) ) ) = ( I ` ( ( 2 x. k ) - 1 ) ) ) | 
						
							| 119 | 109 114 118 | 3eqtr2d |  |-  ( k e. NN -> ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( I ` ( ( 2 x. k ) + 1 ) ) ) = ( I ` ( ( 2 x. k ) - 1 ) ) ) | 
						
							| 120 | 119 | oveq1d |  |-  ( k e. NN -> ( ( ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) x. ( I ` ( ( 2 x. k ) + 1 ) ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) = ( ( I ` ( ( 2 x. k ) - 1 ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 121 | 80 120 | eqtr3d |  |-  ( k e. NN -> ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) = ( ( I ` ( ( 2 x. k ) - 1 ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 122 | 72 121 | breqtrrd |  |-  ( k e. NN -> ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) <_ ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) ) | 
						
							| 123 | 49 63 | rpdivcld |  |-  ( k e. NN -> ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) e. RR+ ) | 
						
							| 124 |  | nfcv |  |-  F/_ n k | 
						
							| 125 |  | nfmpt1 |  |-  F/_ n ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) | 
						
							| 126 | 2 125 | nfcxfr |  |-  F/_ n I | 
						
							| 127 |  | nfcv |  |-  F/_ n ( 2 x. k ) | 
						
							| 128 | 126 127 | nffv |  |-  F/_ n ( I ` ( 2 x. k ) ) | 
						
							| 129 |  | nfcv |  |-  F/_ n / | 
						
							| 130 |  | nfcv |  |-  F/_ n ( ( 2 x. k ) + 1 ) | 
						
							| 131 | 126 130 | nffv |  |-  F/_ n ( I ` ( ( 2 x. k ) + 1 ) ) | 
						
							| 132 | 128 129 131 | nfov |  |-  F/_ n ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 133 |  | oveq2 |  |-  ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) | 
						
							| 134 | 133 | fveq2d |  |-  ( n = k -> ( I ` ( 2 x. n ) ) = ( I ` ( 2 x. k ) ) ) | 
						
							| 135 | 133 | fvoveq1d |  |-  ( n = k -> ( I ` ( ( 2 x. n ) + 1 ) ) = ( I ` ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 136 | 134 135 | oveq12d |  |-  ( n = k -> ( ( I ` ( 2 x. n ) ) / ( I ` ( ( 2 x. n ) + 1 ) ) ) = ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 137 | 124 132 136 3 | fvmptf |  |-  ( ( k e. NN /\ ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) e. RR+ ) -> ( G ` k ) = ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 138 | 123 137 | mpdan |  |-  ( k e. NN -> ( G ` k ) = ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 139 | 5 | a1i |  |-  ( k e. NN -> L = ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) ) | 
						
							| 140 |  | simpr |  |-  ( ( k e. NN /\ n = k ) -> n = k ) | 
						
							| 141 | 140 | oveq2d |  |-  ( ( k e. NN /\ n = k ) -> ( 2 x. n ) = ( 2 x. k ) ) | 
						
							| 142 | 141 | oveq1d |  |-  ( ( k e. NN /\ n = k ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 143 | 142 141 | oveq12d |  |-  ( ( k e. NN /\ n = k ) -> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) = ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) ) | 
						
							| 144 | 139 143 53 77 | fvmptd |  |-  ( k e. NN -> ( L ` k ) = ( ( ( 2 x. k ) + 1 ) / ( 2 x. k ) ) ) | 
						
							| 145 | 122 138 144 | 3brtr4d |  |-  ( k e. NN -> ( G ` k ) <_ ( L ` k ) ) | 
						
							| 146 | 145 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( L ` k ) ) | 
						
							| 147 | 78 79 | dividd |  |-  ( k e. NN -> ( ( I ` ( ( 2 x. k ) + 1 ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) = 1 ) | 
						
							| 148 | 63 | rpred |  |-  ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) e. RR ) | 
						
							| 149 | 2 47 | wallispilem1 |  |-  ( k e. NN -> ( I ` ( ( 2 x. k ) + 1 ) ) <_ ( I ` ( 2 x. k ) ) ) | 
						
							| 150 | 148 50 63 149 | lediv1dd |  |-  ( k e. NN -> ( ( I ` ( ( 2 x. k ) + 1 ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) <_ ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 151 | 147 150 | eqbrtrrd |  |-  ( k e. NN -> 1 <_ ( ( I ` ( 2 x. k ) ) / ( I ` ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 152 | 151 138 | breqtrrd |  |-  ( k e. NN -> 1 <_ ( G ` k ) ) | 
						
							| 153 | 152 | adantl |  |-  ( ( T. /\ k e. NN ) -> 1 <_ ( G ` k ) ) | 
						
							| 154 | 7 8 13 17 35 44 146 153 | climsqz2 |  |-  ( T. -> G ~~> 1 ) | 
						
							| 155 | 154 | mptru |  |-  G ~~> 1 | 
						
							| 156 | 6 155 | eqbrtrri |  |-  H ~~> 1 |