| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wallispi.1 |  |-  F = ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) | 
						
							| 2 |  | wallispi.2 |  |-  W = ( n e. NN |-> ( seq 1 ( x. , F ) ` n ) ) | 
						
							| 3 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 4 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 5 |  | eqid |  |-  ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) | 
						
							| 6 |  | eqid |  |-  ( n e. NN |-> ( ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( 2 x. n ) ) / ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN |-> ( ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( 2 x. n ) ) / ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 7 |  | eqid |  |-  ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) = ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) | 
						
							| 8 |  | eqid |  |-  ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) = ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) | 
						
							| 9 | 1 5 6 7 8 | wallispilem5 |  |-  ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ~~> 1 | 
						
							| 10 | 9 | a1i |  |-  ( T. -> ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ~~> 1 ) | 
						
							| 11 |  | 2cnd |  |-  ( T. -> 2 e. CC ) | 
						
							| 12 |  | picn |  |-  _pi e. CC | 
						
							| 13 | 12 | a1i |  |-  ( T. -> _pi e. CC ) | 
						
							| 14 |  | pire |  |-  _pi e. RR | 
						
							| 15 |  | pipos |  |-  0 < _pi | 
						
							| 16 | 14 15 | gt0ne0ii |  |-  _pi =/= 0 | 
						
							| 17 | 16 | a1i |  |-  ( T. -> _pi =/= 0 ) | 
						
							| 18 | 11 13 17 | divcld |  |-  ( T. -> ( 2 / _pi ) e. CC ) | 
						
							| 19 |  | nnex |  |-  NN e. _V | 
						
							| 20 | 19 | mptex |  |-  ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) e. _V | 
						
							| 21 | 20 | a1i |  |-  ( T. -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) e. _V ) | 
						
							| 22 | 12 | a1i |  |-  ( n e. NN -> _pi e. CC ) | 
						
							| 23 | 22 | halfcld |  |-  ( n e. NN -> ( _pi / 2 ) e. CC ) | 
						
							| 24 |  | elnnuz |  |-  ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) | 
						
							| 25 | 24 | biimpi |  |-  ( n e. NN -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 26 |  | oveq2 |  |-  ( k = j -> ( 2 x. k ) = ( 2 x. j ) ) | 
						
							| 27 | 26 | oveq1d |  |-  ( k = j -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. j ) - 1 ) ) | 
						
							| 28 | 26 27 | oveq12d |  |-  ( k = j -> ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) = ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) ) | 
						
							| 29 | 26 | oveq1d |  |-  ( k = j -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. j ) + 1 ) ) | 
						
							| 30 | 26 29 | oveq12d |  |-  ( k = j -> ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) = ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) | 
						
							| 31 | 28 30 | oveq12d |  |-  ( k = j -> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) ) | 
						
							| 32 |  | elfznn |  |-  ( j e. ( 1 ... n ) -> j e. NN ) | 
						
							| 33 |  | 2cnd |  |-  ( j e. NN -> 2 e. CC ) | 
						
							| 34 |  | nncn |  |-  ( j e. NN -> j e. CC ) | 
						
							| 35 | 33 34 | mulcld |  |-  ( j e. NN -> ( 2 x. j ) e. CC ) | 
						
							| 36 |  | 1cnd |  |-  ( j e. NN -> 1 e. CC ) | 
						
							| 37 | 35 36 | subcld |  |-  ( j e. NN -> ( ( 2 x. j ) - 1 ) e. CC ) | 
						
							| 38 |  | 1red |  |-  ( j e. NN -> 1 e. RR ) | 
						
							| 39 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 40 | 38 38 | remulcld |  |-  ( j e. NN -> ( 1 x. 1 ) e. RR ) | 
						
							| 41 |  | 2re |  |-  2 e. RR | 
						
							| 42 | 41 | a1i |  |-  ( j e. NN -> 2 e. RR ) | 
						
							| 43 | 42 38 | remulcld |  |-  ( j e. NN -> ( 2 x. 1 ) e. RR ) | 
						
							| 44 |  | nnre |  |-  ( j e. NN -> j e. RR ) | 
						
							| 45 | 42 44 | remulcld |  |-  ( j e. NN -> ( 2 x. j ) e. RR ) | 
						
							| 46 |  | 1rp |  |-  1 e. RR+ | 
						
							| 47 | 46 | a1i |  |-  ( j e. NN -> 1 e. RR+ ) | 
						
							| 48 |  | 1lt2 |  |-  1 < 2 | 
						
							| 49 | 48 | a1i |  |-  ( j e. NN -> 1 < 2 ) | 
						
							| 50 | 38 42 47 49 | ltmul1dd |  |-  ( j e. NN -> ( 1 x. 1 ) < ( 2 x. 1 ) ) | 
						
							| 51 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 52 | 51 | a1i |  |-  ( j e. NN -> 0 <_ 2 ) | 
						
							| 53 |  | nnge1 |  |-  ( j e. NN -> 1 <_ j ) | 
						
							| 54 | 38 44 42 52 53 | lemul2ad |  |-  ( j e. NN -> ( 2 x. 1 ) <_ ( 2 x. j ) ) | 
						
							| 55 | 40 43 45 50 54 | ltletrd |  |-  ( j e. NN -> ( 1 x. 1 ) < ( 2 x. j ) ) | 
						
							| 56 | 39 55 | eqbrtrrid |  |-  ( j e. NN -> 1 < ( 2 x. j ) ) | 
						
							| 57 | 38 56 | gtned |  |-  ( j e. NN -> ( 2 x. j ) =/= 1 ) | 
						
							| 58 | 35 36 57 | subne0d |  |-  ( j e. NN -> ( ( 2 x. j ) - 1 ) =/= 0 ) | 
						
							| 59 | 35 37 58 | divcld |  |-  ( j e. NN -> ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) e. CC ) | 
						
							| 60 | 35 36 | addcld |  |-  ( j e. NN -> ( ( 2 x. j ) + 1 ) e. CC ) | 
						
							| 61 |  | 0red |  |-  ( j e. NN -> 0 e. RR ) | 
						
							| 62 | 45 38 | readdcld |  |-  ( j e. NN -> ( ( 2 x. j ) + 1 ) e. RR ) | 
						
							| 63 | 47 | rpgt0d |  |-  ( j e. NN -> 0 < 1 ) | 
						
							| 64 |  | 2rp |  |-  2 e. RR+ | 
						
							| 65 | 64 | a1i |  |-  ( j e. NN -> 2 e. RR+ ) | 
						
							| 66 |  | nnrp |  |-  ( j e. NN -> j e. RR+ ) | 
						
							| 67 | 65 66 | rpmulcld |  |-  ( j e. NN -> ( 2 x. j ) e. RR+ ) | 
						
							| 68 | 38 67 | ltaddrp2d |  |-  ( j e. NN -> 1 < ( ( 2 x. j ) + 1 ) ) | 
						
							| 69 | 61 38 62 63 68 | lttrd |  |-  ( j e. NN -> 0 < ( ( 2 x. j ) + 1 ) ) | 
						
							| 70 | 61 69 | gtned |  |-  ( j e. NN -> ( ( 2 x. j ) + 1 ) =/= 0 ) | 
						
							| 71 | 35 60 70 | divcld |  |-  ( j e. NN -> ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) e. CC ) | 
						
							| 72 | 59 71 | mulcld |  |-  ( j e. NN -> ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) e. CC ) | 
						
							| 73 | 32 72 | syl |  |-  ( j e. ( 1 ... n ) -> ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) e. CC ) | 
						
							| 74 | 1 31 32 73 | fvmptd3 |  |-  ( j e. ( 1 ... n ) -> ( F ` j ) = ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) ) | 
						
							| 75 | 64 | a1i |  |-  ( j e. ( 1 ... n ) -> 2 e. RR+ ) | 
						
							| 76 | 32 | nnrpd |  |-  ( j e. ( 1 ... n ) -> j e. RR+ ) | 
						
							| 77 | 75 76 | rpmulcld |  |-  ( j e. ( 1 ... n ) -> ( 2 x. j ) e. RR+ ) | 
						
							| 78 | 45 38 | resubcld |  |-  ( j e. NN -> ( ( 2 x. j ) - 1 ) e. RR ) | 
						
							| 79 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 80 | 38 45 38 56 | ltsub1dd |  |-  ( j e. NN -> ( 1 - 1 ) < ( ( 2 x. j ) - 1 ) ) | 
						
							| 81 | 79 80 | eqbrtrrid |  |-  ( j e. NN -> 0 < ( ( 2 x. j ) - 1 ) ) | 
						
							| 82 | 78 81 | elrpd |  |-  ( j e. NN -> ( ( 2 x. j ) - 1 ) e. RR+ ) | 
						
							| 83 | 32 82 | syl |  |-  ( j e. ( 1 ... n ) -> ( ( 2 x. j ) - 1 ) e. RR+ ) | 
						
							| 84 | 77 83 | rpdivcld |  |-  ( j e. ( 1 ... n ) -> ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) e. RR+ ) | 
						
							| 85 | 41 | a1i |  |-  ( j e. ( 1 ... n ) -> 2 e. RR ) | 
						
							| 86 | 32 | nnred |  |-  ( j e. ( 1 ... n ) -> j e. RR ) | 
						
							| 87 | 85 86 | remulcld |  |-  ( j e. ( 1 ... n ) -> ( 2 x. j ) e. RR ) | 
						
							| 88 | 75 | rpge0d |  |-  ( j e. ( 1 ... n ) -> 0 <_ 2 ) | 
						
							| 89 | 76 | rpge0d |  |-  ( j e. ( 1 ... n ) -> 0 <_ j ) | 
						
							| 90 | 85 86 88 89 | mulge0d |  |-  ( j e. ( 1 ... n ) -> 0 <_ ( 2 x. j ) ) | 
						
							| 91 | 87 90 | ge0p1rpd |  |-  ( j e. ( 1 ... n ) -> ( ( 2 x. j ) + 1 ) e. RR+ ) | 
						
							| 92 | 77 91 | rpdivcld |  |-  ( j e. ( 1 ... n ) -> ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) e. RR+ ) | 
						
							| 93 | 84 92 | rpmulcld |  |-  ( j e. ( 1 ... n ) -> ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) e. RR+ ) | 
						
							| 94 | 74 93 | eqeltrd |  |-  ( j e. ( 1 ... n ) -> ( F ` j ) e. RR+ ) | 
						
							| 95 | 94 | adantl |  |-  ( ( n e. NN /\ j e. ( 1 ... n ) ) -> ( F ` j ) e. RR+ ) | 
						
							| 96 |  | rpmulcl |  |-  ( ( j e. RR+ /\ w e. RR+ ) -> ( j x. w ) e. RR+ ) | 
						
							| 97 | 96 | adantl |  |-  ( ( n e. NN /\ ( j e. RR+ /\ w e. RR+ ) ) -> ( j x. w ) e. RR+ ) | 
						
							| 98 | 25 95 97 | seqcl |  |-  ( n e. NN -> ( seq 1 ( x. , F ) ` n ) e. RR+ ) | 
						
							| 99 | 98 | rpcnd |  |-  ( n e. NN -> ( seq 1 ( x. , F ) ` n ) e. CC ) | 
						
							| 100 | 98 | rpne0d |  |-  ( n e. NN -> ( seq 1 ( x. , F ) ` n ) =/= 0 ) | 
						
							| 101 | 99 100 | reccld |  |-  ( n e. NN -> ( 1 / ( seq 1 ( x. , F ) ` n ) ) e. CC ) | 
						
							| 102 | 23 101 | mulcld |  |-  ( n e. NN -> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) e. CC ) | 
						
							| 103 | 7 102 | fmpti |  |-  ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) : NN --> CC | 
						
							| 104 | 103 | a1i |  |-  ( T. -> ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) : NN --> CC ) | 
						
							| 105 | 104 | ffvelcdmda |  |-  ( ( T. /\ j e. NN ) -> ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) e. CC ) | 
						
							| 106 |  | fveq2 |  |-  ( n = j -> ( seq 1 ( x. , F ) ` n ) = ( seq 1 ( x. , F ) ` j ) ) | 
						
							| 107 | 106 | eleq1d |  |-  ( n = j -> ( ( seq 1 ( x. , F ) ` n ) e. RR+ <-> ( seq 1 ( x. , F ) ` j ) e. RR+ ) ) | 
						
							| 108 | 107 98 | vtoclga |  |-  ( j e. NN -> ( seq 1 ( x. , F ) ` j ) e. RR+ ) | 
						
							| 109 | 108 | rpcnd |  |-  ( j e. NN -> ( seq 1 ( x. , F ) ` j ) e. CC ) | 
						
							| 110 | 108 | rpne0d |  |-  ( j e. NN -> ( seq 1 ( x. , F ) ` j ) =/= 0 ) | 
						
							| 111 | 36 109 110 | divrecd |  |-  ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) = ( 1 x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) | 
						
							| 112 | 12 | a1i |  |-  ( j e. NN -> _pi e. CC ) | 
						
							| 113 | 65 | rpne0d |  |-  ( j e. NN -> 2 =/= 0 ) | 
						
							| 114 | 16 | a1i |  |-  ( j e. NN -> _pi =/= 0 ) | 
						
							| 115 | 33 112 113 114 | divcan6d |  |-  ( j e. NN -> ( ( 2 / _pi ) x. ( _pi / 2 ) ) = 1 ) | 
						
							| 116 | 115 | eqcomd |  |-  ( j e. NN -> 1 = ( ( 2 / _pi ) x. ( _pi / 2 ) ) ) | 
						
							| 117 | 116 | oveq1d |  |-  ( j e. NN -> ( 1 x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) = ( ( ( 2 / _pi ) x. ( _pi / 2 ) ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) | 
						
							| 118 | 33 112 114 | divcld |  |-  ( j e. NN -> ( 2 / _pi ) e. CC ) | 
						
							| 119 | 112 | halfcld |  |-  ( j e. NN -> ( _pi / 2 ) e. CC ) | 
						
							| 120 | 109 110 | reccld |  |-  ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) e. CC ) | 
						
							| 121 | 118 119 120 | mulassd |  |-  ( j e. NN -> ( ( ( 2 / _pi ) x. ( _pi / 2 ) ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) = ( ( 2 / _pi ) x. ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) ) | 
						
							| 122 | 111 117 121 | 3eqtrd |  |-  ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) = ( ( 2 / _pi ) x. ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) ) | 
						
							| 123 |  | eqidd |  |-  ( j e. NN -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) = ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) | 
						
							| 124 | 106 | oveq2d |  |-  ( n = j -> ( 1 / ( seq 1 ( x. , F ) ` n ) ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) | 
						
							| 125 | 124 | adantl |  |-  ( ( j e. NN /\ n = j ) -> ( 1 / ( seq 1 ( x. , F ) ` n ) ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) | 
						
							| 126 |  | id |  |-  ( j e. NN -> j e. NN ) | 
						
							| 127 | 108 | rpreccld |  |-  ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) e. RR+ ) | 
						
							| 128 | 123 125 126 127 | fvmptd |  |-  ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) | 
						
							| 129 |  | eqidd |  |-  ( j e. NN -> ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) = ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ) | 
						
							| 130 | 125 | oveq2d |  |-  ( ( j e. NN /\ n = j ) -> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) = ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) | 
						
							| 131 | 119 120 | mulcld |  |-  ( j e. NN -> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) e. CC ) | 
						
							| 132 | 129 130 126 131 | fvmptd |  |-  ( j e. NN -> ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) = ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) | 
						
							| 133 | 132 | oveq2d |  |-  ( j e. NN -> ( ( 2 / _pi ) x. ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) ) = ( ( 2 / _pi ) x. ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) ) | 
						
							| 134 | 122 128 133 | 3eqtr4d |  |-  ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( ( 2 / _pi ) x. ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) ) ) | 
						
							| 135 | 134 | adantl |  |-  ( ( T. /\ j e. NN ) -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( ( 2 / _pi ) x. ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) ) ) | 
						
							| 136 | 3 4 10 18 21 105 135 | climmulc2 |  |-  ( T. -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ~~> ( ( 2 / _pi ) x. 1 ) ) | 
						
							| 137 |  | 2cn |  |-  2 e. CC | 
						
							| 138 | 137 12 16 | divcli |  |-  ( 2 / _pi ) e. CC | 
						
							| 139 | 138 | mulridi |  |-  ( ( 2 / _pi ) x. 1 ) = ( 2 / _pi ) | 
						
							| 140 | 136 139 | breqtrdi |  |-  ( T. -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ~~> ( 2 / _pi ) ) | 
						
							| 141 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 142 | 137 12 141 16 | divne0i |  |-  ( 2 / _pi ) =/= 0 | 
						
							| 143 | 142 | a1i |  |-  ( T. -> ( 2 / _pi ) =/= 0 ) | 
						
							| 144 | 128 120 | eqeltrd |  |-  ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. CC ) | 
						
							| 145 | 109 110 | recne0d |  |-  ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) =/= 0 ) | 
						
							| 146 | 128 145 | eqnetrd |  |-  ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) =/= 0 ) | 
						
							| 147 |  | nelsn |  |-  ( ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) =/= 0 -> -. ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. { 0 } ) | 
						
							| 148 | 146 147 | syl |  |-  ( j e. NN -> -. ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. { 0 } ) | 
						
							| 149 | 144 148 | eldifd |  |-  ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. ( CC \ { 0 } ) ) | 
						
							| 150 | 149 | adantl |  |-  ( ( T. /\ j e. NN ) -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. ( CC \ { 0 } ) ) | 
						
							| 151 | 109 110 | recrecd |  |-  ( j e. NN -> ( 1 / ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) = ( seq 1 ( x. , F ) ` j ) ) | 
						
							| 152 | 123 125 126 120 | fvmptd |  |-  ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) | 
						
							| 153 | 152 | oveq2d |  |-  ( j e. NN -> ( 1 / ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) ) = ( 1 / ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) | 
						
							| 154 | 106 2 98 | fvmpt3 |  |-  ( j e. NN -> ( W ` j ) = ( seq 1 ( x. , F ) ` j ) ) | 
						
							| 155 | 151 153 154 | 3eqtr4rd |  |-  ( j e. NN -> ( W ` j ) = ( 1 / ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) ) ) | 
						
							| 156 | 155 | adantl |  |-  ( ( T. /\ j e. NN ) -> ( W ` j ) = ( 1 / ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) ) ) | 
						
							| 157 | 19 | mptex |  |-  ( n e. NN |-> ( seq 1 ( x. , F ) ` n ) ) e. _V | 
						
							| 158 | 2 157 | eqeltri |  |-  W e. _V | 
						
							| 159 | 158 | a1i |  |-  ( T. -> W e. _V ) | 
						
							| 160 | 3 4 140 143 150 156 159 | climrec |  |-  ( T. -> W ~~> ( 1 / ( 2 / _pi ) ) ) | 
						
							| 161 | 160 | mptru |  |-  W ~~> ( 1 / ( 2 / _pi ) ) | 
						
							| 162 |  | recdiv |  |-  ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( 1 / ( 2 / _pi ) ) = ( _pi / 2 ) ) | 
						
							| 163 | 137 141 12 16 162 | mp4an |  |-  ( 1 / ( 2 / _pi ) ) = ( _pi / 2 ) | 
						
							| 164 | 161 163 | breqtri |  |-  W ~~> ( _pi / 2 ) |